Boundary-preserving Mask R-CNN (ECCV 2020)

Overview

BMaskR-CNN

This code is developed on Detectron2

Boundary-preserving Mask R-CNN
ECCV 2020
Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu

Video from Cam看世界 on Youtube.

Abstract

Tremendous efforts have been made to improve mask localization accuracy in instance segmentation. Modern instance segmentation methods relying on fully convolutional networks perform pixel-wise classification, which ignores object boundaries and shapes, leading coarse and indistinct mask prediction results and imprecise localization. To remedy these problems, we propose a conceptually simple yet effective Boundary-preserving Mask R-CNN (BMask R-CNN) to leverage object boundary information to improve mask localization accuracy. BMask R-CNN contains a boundary-preserving mask head in which object boundary and mask are mutually learned via feature fusion blocks. As a result,the mask prediction results are better aligned with object boundaries. Without bells and whistles, BMask R-CNN outperforms Mask R-CNN by a considerable margin on the COCO dataset; in the Cityscapes dataset,there are more accurate boundary groundtruths available, so that BMaskR-CNN obtains remarkable improvements over Mask R-CNN. Besides, it is not surprising to observe that BMask R-CNN obtains more obvious improvement when the evaluation criterion requires better localization (e.g., AP75)

Models

COCO

Method Backbone lr sched AP AP50 AP75 APs APm APl download
Mask R-CNN R50-FPN 1x 35.2 56.3 37.5 17.2 37.7 50.3 -
PointRend R50-FPN 1x 36.2 56.6 38.6 17.1 38.8 52.5 -
BMask R-CNN R50-FPN 1x 36.6 56.7 39.4 17.3 38.8 53.8 model
BMask R-CNN R101-FPN 1x 38.0 58.6 40.9 17.6 40.6 56.8 model
Cascade Mask R-CNN R50-FPN 1x 36.4 56.9 39.2 17.5 38.7 52.5 -
Cascade BMask R-CNN R50-FPN 1x 37.5 57.3 40.7 17.5 39.8 55.1 model
Cascade BMask R-CNN R101-FPN 1x 39.1 59.2 42.4 18.6 42.2 57.4 model

Cityscapes

  • Initialized from ImagetNet pre-training.
Method Backbone lr sched AP download
PointRend R50-FPN 1x 35.9 -
BMask R-CNN R50-FPN 1x 36.2 model

Results

Left: AP curves of Mask R-CNN and BMask R-CNN under different mask IoU thresholds on the COCO val2017 set, the improvement becomes more significant when IoU increases. Right: Visualizations of Mask R-CNN and BMask R-CNN. BMask R-CNN can output more precise boundaries and accurate masks than Mask R-CNN.

Usage

Install Detectron2 following the official instructions

Training

specify a config file and train a model with 4 GPUs

cd projects/BMaskR-CNN
python train_net.py --config-file configs/bmask_rcnn_R_50_FPN_1x.yaml --num-gpus 4

Evaluation

specify a config file and test with trained model

cd projects/BMaskR-CNN
python train_net.py --config-file configs/bmask_rcnn_R_50_FPN_1x.yaml --num-gpus 4 --eval-only MODEL.WEIGHTS /path/to/model

Citation

@article{ChengWHL20,
  title={Boundary-preserving Mask R-CNN},
  author={Tianheng Cheng and Xinggang Wang and Lichao Huang and Wenyu Liu},
  booktitle={ECCV},
  year={2020}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022