A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

Overview

One-Stage Visual Grounding

***** New: Our recent work on One-stage VG is available at ReSC.*****

A Fast and Accurate One-Stage Approach to Visual Grounding

by Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and Jiebo Luo

IEEE International Conference on Computer Vision (ICCV), 2019, Oral

Introduction

We propose a simple, fast, and accurate one-stage approach to visual grounding. For more details, please refer to our paper.

Citation

@inproceedings{yang2019fast,
  title={A Fast and Accurate One-Stage Approach to Visual Grounding},
  author={Yang, Zhengyuan and Gong, Boqing and Wang, Liwei and Huang
    , Wenbing and Yu, Dong and Luo, Jiebo},
  booktitle={ICCV},
  year={2019}
}

Prerequisites

  • Python 3.5 (3.6 tested)
  • Pytorch 0.4.1
  • Others (Pytorch-Bert, OpenCV, Matplotlib, scipy, etc.)

Installation

  1. Clone the repository

    git clone https://github.com/zyang-ur/onestage_grounding.git
    
  2. Prepare the submodules and associated data

  • RefCOCO & ReferItGame Dataset: place the data or the soft link of dataset folder under ./ln_data/. We follow dataset structure DMS. To accomplish this, the download_dataset.sh bash script from DMS can be used.
    bash ln_data/download_data.sh --path ./ln_data
  • Flickr30K Entities Dataset: please download the images for the dataset on the website for the Flickr30K Entities Dataset and the original Flickr30k Dataset. Images should be placed under ./ln_data/Flickr30k/flickr30k_images.

  • Data index: download the generated index files and place them as the ./data folder. Availble at [Gdrive], [One Drive].

    rm -r data
    tar xf data.tar
    
  • Model weights: download the pretrained model of Yolov3 and place the file in ./saved_models.

    sh saved_models/yolov3_weights.sh
    

More pretrained models are availble in the performance table [Gdrive], [One Drive] and should also be placed in ./saved_models.

Training

  1. Train the model, run the code under main folder. Using flag --lstm to access lstm encoder, Bert is used as the default. Using flag --light to access the light model.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --batch_size 32 --resume saved_models/lstm_referit_model.pth.tar \
      --lr 1e-4 --nb_epoch 100 --lstm
    
  2. Evaluate the model, run the code under main folder. Using flag --test to access test mode.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --resume saved_models/lstm_referit_model.pth.tar \
      --lstm --test
    
  3. Visulizations. Flag --save_plot will save visulizations.

Performance and Pre-trained Models

Please check the detailed experiment settings in our paper.

Dataset Ours-LSTM Performance ([email protected]) Ours-Bert Performance ([email protected])
ReferItGame Gdrive 58.76 Gdrive 59.30
Flickr30K Entities One Drive 67.62 One Drive 68.69
RefCOCO val: 73.66 val: 72.05
testA: 75.78 testA: 74.81
testB: 71.32 testB: 67.59

Credits

Part of the code or models are from DMS, MAttNet, Yolov3 and Pytorch-yolov3.

Owner
Zhengyuan Yang
Zhengyuan Yang
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022