A high-performance distributed deep learning system targeting large-scale and automated distributed training.

Overview

HETU

Documentation | Examples

Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, developed by DAIR Lab at Peking University. It takes account of both high availability in industry and innovation in academia, which has a number of advanced characteristics:

  • Applicability. DL model definition with standard dataflow graph; many basic CPU and GPU operators; efficient implementation of more than plenty of DL models and at least popular 10 ML algorithms.

  • Efficiency. Achieve at least 30% speedup compared to TensorFlow on DNN, CNN, RNN benchmarks.

  • Flexibility. Supporting various parallel training protocols and distributed communication architectures, such as Data/Model/Pipeline parallel; Parameter server & AllReduce.

  • Scalability. Deployment on more than 100 computation nodes; Training giant models with trillions of model parameters, e.g., Criteo Kaggle, Open Graph Benchmark

  • Agility. Automatically ML pipeline: feature engineering, model selection, hyperparameter search.

We welcome everyone interested in machine learning or graph computing to contribute codes, create issues or pull requests. Please refer to Contribution Guide for more details.

Installation

  1. Clone the repository.

  2. Prepare the environment. We use Anaconda to manage packages. The following command create the conda environment to be used:conda env create -f environment.yml. Please prepare Cuda toolkit and CuDNN in advance.

  3. We use CMake to compile Hetu. Please copy the example configuration for compilation by cp cmake/config.example.cmake cmake/config.cmake. Users can modify the configuration file to enable/disable the compilation of each module. For advanced users (who not using the provided conda environment), the prerequisites for different modules in Hetu is listed in appendix.

# modify paths and configurations in cmake/config.cmake

# generate Makefile
mkdir build && cd build && cmake ..

# compile
# make all
make -j 8
# make hetu, version is specified in cmake/config.cmake
make hetu -j 8
# make allreduce module
make allreduce -j 8
# make ps module
make ps -j 8
# make geometric module
make geometric -j 8
# make hetu-cache module
make hetu_cache -j 8
  1. Prepare environment for running. Edit the hetu.exp file and set the environment path for python and the path for executable mpirun if necessary (for advanced users not using the provided conda environment). Then execute the command source hetu.exp .

Usage

Train logistic regression on gpu:

bash examples/cnn/scripts/hetu_1gpu.sh logreg MNIST

Train a 3-layer mlp on gpu:

bash examples/cnn/scripts/hetu_1gpu.sh mlp CIFAR10

Train a 3-layer cnn with gpu:

bash examples/cnn/scripts/hetu_1gpu.sh cnn_3_layers MNIST

Train a 3-layer mlp with allreduce on 8 gpus (use mpirun):

bash examples/cnn/scripts/hetu_8gpu.sh mlp CIFAR10

Train a 3-layer mlp with PS on 1 server and 2 workers:

# in the script we launch the scheduler and server, and two workers
bash examples/cnn/scripts/hetu_2gpu_ps.sh mlp CIFAR10

More Examples

Please refer to examples directory, which contains CNN, NLP, CTR, GNN training scripts. For distributed training, please refer to CTR and GNN tasks.

Community

License

The entire codebase is under license

Papers

  1. Xupeng Miao, Lingxiao Ma, Zhi Yang, Yingxia Shao, Bin Cui, Lele Yu, Jiawei Jiang. CuWide: Towards Efficient Flow-based Training for Sparse Wide Models on GPUs. TKDE 2021, ICDE 2021
  2. Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, Bin Cui. Heterogeneity-Aware Distributed Machine Learning Training via Partial Reduce. SIGMOD 2021
  3. Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao, Bin Cui. HET: Scaling out Huge Embedding Model Training via Cache-enabled Distributed Framework. VLDB 2022, ChinaSys 2021 Winter.
  4. coming soon

Cite

If you use Hetu in a scientific publication, we would appreciate citations to the following paper:

 @inproceedings{vldb/het22,
   title = {HET: Scaling out Huge Embedding Model Training via Cache-enabled Distributed Framework},
   author = {Xupeng Miao and
         Hailin Zhang and
         Yining Shi and
             Xiaonan Nie and
             Zhi Yang and
             Yangyu Tao and
             Bin Cui},
   journal = {Proc. {VLDB} Endow.},
   year = {2022},
   url  = {https://doi.org/10.14778/3489496.3489511},
   doi  = {10.14778/3489496.3489511},
 }

Acknowledgements

We learned and borrowed insights from a few open source projects including TinyFlow, autodist, tf.distribute and Angel.

Appendix

The prerequisites for different modules in Hetu is listed as follows:

"*" means you should prepare by yourself, while others support auto-download

Hetu: OpenMP(*), CMake(*)
Hetu (version mkl): MKL 1.6.1
Hetu (version gpu): CUDA 10.1(*), CUDNN 7.5(*)
Hetu (version all): both

Hetu-AllReduce: MPI 3.1, NCCL 2.8(*), this module needs GPU version

Hetu-PS: Protobuf(*), ZeroMQ 4.3.2

Hetu-Geometric: Pybind11(*), Metis(*)

Hetu-Cache: Pybind11(*), this module needs PS module

##################################################################
Tips for preparing the prerequisites

Preparing CUDA, CUDNN, NCCL(NCCl is already in conda environment):
1. download from https://developer.nvidia.com
2. install
3. modify paths in cmake/config.cmake if necessary

Preparing OpenMP:
Your just need to ensure your compiler support openmp.

Preparing CMake, Protobuf, Pybind11, Metis:
Install by anaconda: 
conda install cmake=3.18 libprotobuf pybind11=2.6.0 metis

Preparing OpenMPI (not necessary):
install by anaconda: `conda install -c conda-forge openmpi=4.0.3`
or
1. download from https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.3.tar.gz
2. build openmpi by `./configure /path/to/build && make -j8 && make install`
3. modify MPI_HOME to /path/to/build in cmake/config.cmake

Preparing MKL (not necessary):
install by anaconda: `conda install -c conda-forge onednn`
or
1. download from https://github.com/intel/mkl-dnn/archive/v1.6.1.tar.gz
2. build mkl by `mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8` 
3. modify MKL_ROOT to /path/to/root and MKL_BUILD to /path/to/build in cmake/config.cmake 

Preparing ZeroMQ (not necessary):
install by anaconda: `conda install -c anaconda zeromq=4.3.2`
or
1. download from https://github.com/zeromq/libzmq/releases/download/v4.3.2/zeromq-4.3.2.zip
2. build zeromq by 'mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8`
3. modify ZMQ_ROOT to /path/to/build in cmake/config.cmake
Owner
DAIR Lab
Data and Intelligence Research (DAIR) Lab @ Peking University
DAIR Lab
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022