Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

Overview

MOS-Multi-Task-Face-Detect

Introduction

This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation". The paper has been accepted at BMVC2021.

This repo is an implementation of PyTorch. MOS is a low latency and lightweight architecture for face detection, facial landmark localization and head pose estimation.It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

Updates

  • 【2021/10/31】 We have released the training data (widerface with pose label). The pytorch inference code of MOS-S and MOS-M has been released!
  • 【2021/10/22】 We have released our paper on Arxiv.
  • 【2021/10/15】 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation" has been accepted at BMVC2021.

Comming soon

  • Tensorrt inference code.
  • Openvino inference code.
  • Ncnn inference code.
  • The fastest version: MOS-tiny.

Benchmark

Light Models.

WiderFace Val Performance is in multi scale and Pose evaluation is using AFLW2000 in 300X300 as image input.

Model backbone easy medium hard pitch yaw roll
MOS-M mobilenetV2 94.08 93.21 88.06 6.67 4.43 5.83
MOS-S shufflenetV2 93.28 92.12 86.97 6.80 4.28 5.99

generate widerface validation results

  1. Generate txt file You need download the validation and test dataset of WiderFace from Here
python test_widerface.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
  1. Evaluate txt results. Demo come from Here
cd ./widerface_evaluate
python setup.py build_ext --inplace
python evaluation.py

Training data

  1. Download annotations (face bounding boxes & five facial landmarks & pose angle(pitch,yaw,roll)) from baidu cloud , the code is 0925. We also provide the GOOGLE DRIVE
  2. Organise the dataset directory as follows:
  ./data/widerface/
    train/
      images/
      label.txt

The annotation file is like:

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82 -6 -6 1

face_x face_y face_width face_height landmark1.x landmark1.y 0.0 landmark2.x landmark2.y 0.0 landmark3.x landmark3.y 0.0 landmark4.x landmark4.y 0.0
landmark5.x landmark5.y 0.0 confidence pitch yaw roll

Quick Start

Installation

Step1. Install MOS.

git clone https://github.com/lyp-deeplearning/MOS-Multi-Task-Face-Detect.git
cd MOS-Multi-Task-Face-Detect
conda create -n MOS python=3.8.5
conda activate MOS
pip install -r requirements.txt
cd models/DCNv2/
python setup.py build develop

Step2. Run Pytorch inference demo.

## run the MOS-M model 
python detect_picture.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
## run the MOS-S model
python detect_picture.py --network cfg_mos_s --trained_model ./test_weights/MOS-S.pth

Step3. Run video inference demo.

## run the MOS-M model 
python detect_video.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth

Cite MOS

If you use MOS in your research, please cite our work by using the following BibTeX entry:

@article{liu2021mos,
  title={MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation},
  author={Liu, Yepeng and Gu, Zaiwang and Gao, Shenghua and Wang, Dong and Zeng, Yusheng and Cheng, Jun},
  journal={arXiv preprint arXiv:2110.10953},
  year={2021}
}
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022