Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

Overview

MOS-Multi-Task-Face-Detect

Introduction

This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation". The paper has been accepted at BMVC2021.

This repo is an implementation of PyTorch. MOS is a low latency and lightweight architecture for face detection, facial landmark localization and head pose estimation.It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

Updates

  • 【2021/10/31】 We have released the training data (widerface with pose label). The pytorch inference code of MOS-S and MOS-M has been released!
  • 【2021/10/22】 We have released our paper on Arxiv.
  • 【2021/10/15】 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation" has been accepted at BMVC2021.

Comming soon

  • Tensorrt inference code.
  • Openvino inference code.
  • Ncnn inference code.
  • The fastest version: MOS-tiny.

Benchmark

Light Models.

WiderFace Val Performance is in multi scale and Pose evaluation is using AFLW2000 in 300X300 as image input.

Model backbone easy medium hard pitch yaw roll
MOS-M mobilenetV2 94.08 93.21 88.06 6.67 4.43 5.83
MOS-S shufflenetV2 93.28 92.12 86.97 6.80 4.28 5.99

generate widerface validation results

  1. Generate txt file You need download the validation and test dataset of WiderFace from Here
python test_widerface.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
  1. Evaluate txt results. Demo come from Here
cd ./widerface_evaluate
python setup.py build_ext --inplace
python evaluation.py

Training data

  1. Download annotations (face bounding boxes & five facial landmarks & pose angle(pitch,yaw,roll)) from baidu cloud , the code is 0925. We also provide the GOOGLE DRIVE
  2. Organise the dataset directory as follows:
  ./data/widerface/
    train/
      images/
      label.txt

The annotation file is like:

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82 -6 -6 1

face_x face_y face_width face_height landmark1.x landmark1.y 0.0 landmark2.x landmark2.y 0.0 landmark3.x landmark3.y 0.0 landmark4.x landmark4.y 0.0
landmark5.x landmark5.y 0.0 confidence pitch yaw roll

Quick Start

Installation

Step1. Install MOS.

git clone https://github.com/lyp-deeplearning/MOS-Multi-Task-Face-Detect.git
cd MOS-Multi-Task-Face-Detect
conda create -n MOS python=3.8.5
conda activate MOS
pip install -r requirements.txt
cd models/DCNv2/
python setup.py build develop

Step2. Run Pytorch inference demo.

## run the MOS-M model 
python detect_picture.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
## run the MOS-S model
python detect_picture.py --network cfg_mos_s --trained_model ./test_weights/MOS-S.pth

Step3. Run video inference demo.

## run the MOS-M model 
python detect_video.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth

Cite MOS

If you use MOS in your research, please cite our work by using the following BibTeX entry:

@article{liu2021mos,
  title={MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation},
  author={Liu, Yepeng and Gu, Zaiwang and Gao, Shenghua and Wang, Dong and Zeng, Yusheng and Cheng, Jun},
  journal={arXiv preprint arXiv:2110.10953},
  year={2021}
}
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022