Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Overview

Introduction

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.

The currently supported algorithms include:

Domain Adaptation for Classification
  • Domain-Adversarial Training of Neural Networks (DANN, ICML 2015)
  • Learning Transferable Features with Deep Adaptation Networks (DAN, ICML 2015)
  • Deep Transfer Learning with Joint Adaptation Networks (JAN, ICML 2017)
  • Conditional Adversarial Domain Adaptation (CDAN, NIPS 2018)
  • Maximum Classifier Discrepancy for Unsupervised Domain Adaptation (MCD, CVPR 2018)
  • Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation (AFN, ICCV 2019)
  • Bridging Theory and Algorithm for Domain Adaptation (MDD, ICML 2019)
  • Minimum Class Confusion for Versatile Domain Adaptation (MCC, ECCV 2020)
Partial Domain Adaptation
  • Partial Adversarial Domain Adaptation (PADA, ECCV 2018)
  • Importance Weighted Adversarial Nets for Partial Domain Adaptation (IWAN, CVPR 2018)
Open-set Domain Adaptation
  • Open Set Domain Adaptation by Backpropagation (OSBP, ECCV 2018)
Domain Adaptation for Segmentation
  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (CycleGAN, ICCV 2017)
  • CyCADA: Cycle-Consistent Adversarial Domain Adaptation (ICML 2018)
  • ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation (CVPR 2019)
  • FDA: Fourier Domain Adaptation for Semantic Segmentation (CVPR 2020)
Domain Adaptation for Keypoint Detection
  • Regressive Domain Adaptation for Unsupervised Keypoint Detection (RegDA, CVPR 2021)
Finetune for Classification
  • DEep Learning Transfer using Fea- ture Map with Attention for convolutional networks (DELTA, ICLR 2019)
  • Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning (BSS, NIPS 2019)
  • Stochastic Normalization (StochNorm, NIPS 2020)
  • Co-Tuning for Transfer Learning (Co-Tuning, NIPS 2020).

We are planning to add

  • Domain Generalization
  • Multi-task Learning
  • DA for Object Detection
  • Universal Domain Adaptation

The performance of these algorithms were fairly evaluated in this benchmark.

Installation

For flexible use and modification, please git clone the library.

Documentation

You can find the tutorial and API documentation on the website: Documentation (please open in Firefox or Safari). Note that this link is only for temporary use. You can also build the doc by yourself following the instructions in http://170.106.108.162/get_started/faq.html.

Also, we have examples in the directory examples. A typical usage is

# Train a DANN on Office-31 Amazon -> Webcam task using ResNet 50.
# Assume you have put the datasets under the path `data/office-31`, 
# or you are glad to download the datasets automatically from the Internet to this path
python dann.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 20

In the directory examples, you can find all the necessary running scripts to reproduce the benchmarks with specified hyper-parameters.

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Contact

If you have any problem with our code or have some suggestions, including the future feature, feel free to contact

or describe it in Issues.

For Q&A in Chinese, you can choose to ask questions here before sending an email. 迁移学习算法库答疑专区

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@misc{dalib,
  author = {Junguang Jiang, Baixu Chen, Bo Fu, Mingsheng Long},
  title = {Transfer-Learning-library},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/thuml/Transfer-Learning-Library}},
}

Acknowledgment

We would like to thank School of Software, Tsinghua University and The National Engineering Laboratory for Big Data Software for providing such an excellent ML research platform.

Comments
  • fogy_cityscape dataset convert error:The total number of index is not correct    for adaptive object detection

    fogy_cityscape dataset convert error:The total number of index is not correct for adaptive object detection

    hello thanks for developing this lib i get voc style dataset of cityscape/fogy_cityscape in prepare_cityscapes_to_voc.py but i find index of ImageSets/Main/test.txt which only have 493 indexs ,but there are 500 in paper

    question object detection 
    opened by zyfone 9
  • Can't run rightly

    Can't run rightly

    I've installed dalib and do experiments according to the GitHub example. The question is it can't run rightly, always stuck in the beginning. image It seems like the dataset is not read in because the GPU memory is not used. image And I've checked the dataset format as described in the API documentation. So I want to get some help. Thanks.

    opened by WHUzhusihan96 8
  • The download URL used in the vision dataset is dead.

    The download URL used in the vision dataset is dead.

    Right now, when I clone this latest repository and run the tutorial, I get the following error:

    スクリーンショット 2021-03-30 16 08 47

    This referenced URL seems dead. https://cloud.tsinghua.edu.cn/f/1f5646f39aeb4d7389b9/?dl=1 

    opened by TaiseiYamana 7
  • 关于imagenet-r数据集的格式问题

    关于imagenet-r数据集的格式问题

    您好,感谢您提供如此好关于迁移学习的开源项目。 我遇到的问题是关于imagenet-r的数据集的格式准备问题,在做image_classfication的域自适应中,我在您提供的链接下载了imagenet-r.tar数据集,并在image_calssfication目录下创建了ImageNetR目录,并将imagenet-r.tar拷贝到了ImageNetR目录下,之后调用解压指令tar -xvf imagenet-r.tar 解压了iamgenet-r.tar压缩包,最后调用UDA_VISIBLE_DEVICES=0 python dann.py data/ImageNetR -d ImageNetR -s IN -t INR -a resnet50 --epochs 30 -i 2500 -p 500 --seed 0 --log logs/dann/ImageNet_IN2INR启动脚本。但是程序报错,报错信息如下: FileNotFoundError: [Errno 2] No such file or directory: 'data/ImageNetR/train/n09835506/n09835506_14973.JPEG' 初步判断就是imagenet-r数据集并没有按照规定的格式进行准备,但是该错误意思是该数据集有train和val的划分,但是我解压imagenet-r.tar发现并没有划分train和val,看您的说明文档让在imagenet-r.py查看数据集准备的格式,但是我在该文件中并没有看到相关的代码,所以想请教您一下这个数据集的准备工作具体怎么做呢? 非常期待您的回复,我是在linux系统上进行测试,不过感觉这个bug和系统关系也不大。

    opened by fycfycfyc 6
  • 'utils' module

    'utils' module

    Hello, I tried to run the code from dann.py, but received the error that module 'utils' has no attributes 'get_dataset_names', 'get_train_transform', 'get_val_transform', etc. Also, I could not find these attributes in 'utils' folder. Could you please help to resolve this problem? Perhaps, I do something wrong. Thank you very much! image

    opened by EvgeniyS99 6
  • Attribute 'thing_classes' does not exist in the metadata of dataset: metadata is empty.

    Attribute 'thing_classes' does not exist in the metadata of dataset: metadata is empty.

    Hello,

    I am testing your examples/domain_adaptation/object_detection/d_adapt/d_adapt.py method on my custom dataset (30 classes), which i converted to VOC format. Initially, I trained it on source-only.py successfully, but when trying to run d-adapt.py, I receive the following error.

    -- Process 0 terminated with the following error:
    Traceback (most recent call last):
      File "/opt/rh/rh-python38/root/usr/local/lib64/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
        fn(i, *args)
      File "/scratch/project_2005695/detectron2/detectron2/engine/launch.py", line 126, in _distributed_worker
        main_func(*args)
      File "/scratch/project_2005695/Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/d_adapt.py", line 272, in main
        train(model, logger, cfg, args, args_cls, args_box)
      File "/scratch/project_2005695/Transfer-Learning-Library/examples/domain_adaptation/object_detection/d_adapt/d_adapt.py", line 131, in train
        classes = MetadataCatalog.get(args.targets[0]).thing_classes
      File "/scratch/project_2005695/detectron2/detectron2/data/catalog.py", line 131, in __getattr__
        raise AttributeError(
    AttributeError: Attribute 'thing_classes' does not exist in the metadata of dataset '.._datasets_TLESS_real_dataset_trainval': metadata is empty.
    

    I have registered the base class in tllib/vision/datasets/object_detection/__init__.py same way as in the provided CityScapesBase class:

    class TLessBase:
        class_names = ('Model 1', 'Model 2', 'Model 3', 'Model 4', 'Model 5',
                    'Model 6', 'Model 7', 'Model 8', 'Model 9', 'Model 10', 'Model 11',
                    'Model 12', 'Model 13', 'Model 14', 'Model 15', 'Model 16', 'Model 17',
                    'Model 18', 'Model 19', 'Model 20', 'Model 21', 'Model 22', 'Model 23',
                    'Model 24', 'Model 25', 'Model 26', 'Model 27', 'Model 28', 'Model 29', 'Model 30'
                    )
    
        def __init__(self, root, split="trainval", year=2007, ext='.jpg'):
            self.name = "{}_{}".format(root, split)
            self.name = self.name.replace(os.path.sep, "_")
            if self.name not in MetadataCatalog.keys():
                register_pascal_voc(self.name, root, split, year, class_names=self.class_names, ext=ext,
                                    bbox_zero_based=True)
                MetadataCatalog.get(self.name).evaluator_type = "pascal_voc"
    

    And then the target and the test classes inherit from it.

    Could you please suggest what I am missing?

    bug object detection 
    opened by darkhan-s 6
  • 关于MDD算法在Visda数据集上的复现

    关于MDD算法在Visda数据集上的复现

    MDD原文中(Bridging Theory and Algorithm for Domain Adaptation),Table3写道算法在visda数据集上Acc能达到74%+,请问可以分享一下超参数设置吗?比如说Initial LR、lr_gamma、lr_decay。十分感谢,最近我也在进行DA的工作,但是利用该lib开源代码的default setting无法reproduce,这样不太敢直接引用数据。 十分感谢!!!!

    opened by dingning97 6
  • Office31 fails to download

    Office31 fails to download

    I tried to use your library today and I used the example command for DANN on Office31. However, the dataset fails to download. Could you please check, if the download link is still up-to-date?

    python examples/dann.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 20
    Namespace(arch='resnet50', batch_size=32, data='Office31', epochs=20, iters_per_epoch=1000, lr=0.01, momentum=0.9, print_freq=100, root='data/office31', seed=None, source='A', target='W', trade_off=1.0, weight_decay=0.001, workers=2)
    Downloading amazon
    Downloading https://cloud.tsinghua.edu.cn/f/05640442cd904c39ad60/?dl=1 to data/office31/amazon.tgz
     64%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏                                                               | 13164544/20448768 [01:24<01:30, 80083.97it/s]Failed download. Trying https -> http instead. Downloading http://cloud.tsinghua.edu.cn/f/05640442cd904c39ad60/?dl=1 to data/office31/amazon.tgz
     64%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋                                                               | 13180928/20448768 [01:32<00:51, 141740.80it/s]
    Extracting data/office31/amazon.tgz to data/office31                                                                                                                                                          | 0/7692 [00:06<?, ?it/s]
    Fail to download amazon.tgz from url link https://cloud.tsinghua.edu.cn/f/05640442cd904c39ad60/?dl=1
    Please check you internet connection or reinstall DALIB by 'pip install --upgrade dalib'
    
    
    opened by mstoelzle 6
  • 请问 synthia中,synthia_mapped_to_cityscapes这个文件在哪里能找到

    请问 synthia中,synthia_mapped_to_cityscapes这个文件在哪里能找到

    data/synthia
    ├── RGB
    ├── synthia_mapped_to_cityscapes
    └── ...
    

    我在那个官网上下载了 SYNTHIA-RAND-CITYSCAPES (CVPR16) 但里面没有这个文件,我之前跑的网络用的是上面这个数据及,但这个我看 UDA里面 synthia里面 readme有要这个文件

    opened by yuheyuan 4
  • Failed to import mmdetection

    Failed to import mmdetection

    When i try to run source_only.py I get the error message "No module named 'tlllib.vision.models.object_detection.backbone.mmdetection'"

    If I try to import "tlllib.vision.models.object_detection" it seems that the error is in the file backbone/vgg.py in "from .mmdetection.vgg import VGG. Any clue how I can fix this?

    help wanted 
    opened by SeucheAchat9115 4
  • Help on Trainning with custom dataset

    Help on Trainning with custom dataset

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    question 
    opened by Mininggamer 4
  • torchvision should be upgrade

    torchvision should be upgrade

    Describe the bug Like issue#114, the bug is not fixed yet.

    To Reproduce Example of cycada cannot be run successfully. It will raise exception.

    Additional context

    Traceback (most recent call last):
      File "/home/studio-lab-user/sagemaker-studiolab-notebooks/Transfer-Learning-Library/cycada.py", line 27, in <module>
        import tllib.vision.models.segmentation as models
      File "<frozen zipimport>", line 259, in load_module
      File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tllib-0.4-py3.9.egg/tllib/vision/models/segmentation/__init__.py", line 1, in <module>
      File "<frozen zipimport>", line 259, in load_module
      File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tllib-0.4-py3.9.egg/tllib/vision/models/segmentation/deeplabv2.py", line 6, in <module>
    ModuleNotFoundError: No module named 'torchvision.models.utils'
    
    bug 
    opened by hetan697 1
  • 您好,有关coral函数的疑问。

    您好,有关coral函数的疑问。

    敬的作者,您好: 非常感谢您的伟大的工作,这方便了我们这些非专业人员快速学习有关迁移学习的知识。我在研究coral中时,有以下疑问向您请教:

    1、Transfer-Learning-Library/tree/master/examples/domain_generalization/image_classification)/coral.py中,第182-192行中,

    for domain_i in range(n_domains_per_batch): # cls loss y_i, labels_i = y_all[domain_i], labels_all[domain_i] loss_ce += F.cross_entropy(y_i, labels_i) # update acc cls_acc += accuracy(y_i, labels_i)[0] / n_domains_per_batch # correlation alignment loss for domain_j in range(domain_i + 1, n_domains_per_batch): f_i = f_all[domain_i] f_j = f_all[domain_j] loss_penalty += correlation_alignment_loss(f_i, f_j)

    为什么需要对每一个样本计算coral损失值,可以直接对一个step中的样本直接计算损失值吗?

    2、在196行中: loss_penalty /= n_domains_per_batch * (n_domains_per_batch - 1) / 2 为什么计算loss_penalty需要除以n_domains_per_batch * (n_domains_per_batch - 1) / 2呢?

    期待您的答疑。

    question 
    opened by SCXCLY 3
  • 实验结果差别大

    实验结果差别大

    作者您好,为什么我这边跑出来的source_only的结果和您的差别有点大呀,作者您是把最后的final_mode那一轮记录的结果作为最终的精确度的吗?还有作者在跑watercolor、comic等数据集集的时候,eg:-t采用的是WaterColor,--test采用的是WaterColorTest吗?如果您能够解答,我将非常感谢! Evaluating datasets_watercolor_train using 2007 metric. +---------+---------------------+ | AP | 0.0129179003324974 | | AP50 | 0.04594659669912493 | | AP75 | 0.00946969696969697 | | bicycle | 0.0 | | bird | 0.12804097311139565 | | car | 0.00989756025139803 | | cat | 0.0 | | dog | 0.13774104683195593 | | person | 0.0 | +---------+---------------------+ Evaluating datasets_watercolor_test using 2007 metric. +---------+----------------------+ | AP | 0.08883031642337483 | | AP50 | 0.2204288930733166 | | AP75 | 0.05140623869850683 | | bicycle | 0.0 | | bird | 0.11188811188811189 | | car | 0.007665184730952015 | | cat | 0.19342359767891684 | | dog | 0.18315018315018317 | | person | 0.8264462809917356 | +---------+----------------------+

    question 
    opened by anranbixin 8
  • 作者您好,我在使用d_adapt.py 程序时出现了一些bug。

    作者您好,我在使用d_adapt.py 程序时出现了一些bug。

    Traceback (most recent call last): File "d_adapt.py", line 348, in args=(args, args_cls, args_box), File "/home/shishijie/anaconda3/envs/detectron-na/lib/python3.6/site-packages/detectron2/engine/launch.py", line 82, in launch main_func(*args) File "d_adapt.py", line 277, in main train(model, logger, cfg, args, args_cls, args_box) File "d_adapt.py", line 163, in train bbox_adaptor.fit(data_loader_source, data_loader_target, data_loader_validation) File "/home/shishijie/shishijie_projects/domain_adapatation/Transfer-Learning-Library-master/examples/domain_adaptation/object_detection/d_adapt/bbox_adaptation.py", line 354, in fit x_s, labels_s = next(iter_source) File "/home/shishijie/shishijie_projects/domain_adapatation/Transfer-Learning-Library-master/examples/domain_adaptation/object_detection/d_adapt/tllib/utils/data.py", line 55, in next data = next(self.iter) File "/home/shishijie/anaconda3/envs/detectron-na/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 521, in next data = self._next_data() File "/home/shishijie/anaconda3/envs/detectron-na/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 1176, in _next_data raise StopIteration StopIteration

    我调了一天,我目前的看法是:a_adapt程序有四个训练阶段:源域预训练,类别适应,边界框适应,⽬标域伪标签训练。但是现在源域预训练没问题,我用源域的训练权重作为后续训练的预训练权重,10个epcho的类别适应训练也没问题,边界框适应训练出现了问题。

    examples/domain_adaptation/object_detection/d_adapt/d_adapt.py 文件调用的bbox_adaptor.fit(data_loader_source, data_loader_target, data_loader_validation) 函数出现了问题,examples/domain_adaptation/object_detection/d_adapt/bbox_adaptation.py 文件中的 iter_source 拿不到标签数据,

    (ps:自己的数据集和官方的voc2007和clipart数据集都是这样,我的训练命令:CUDA_VISIBLE_DEVICES=0 python d_adapt.py --config-file config/retinanet_R_101_FPN_voc.yaml -s VOC2007 ../datasets/VOC2007 -t Clipart ../datasets/clipart --test Clipart ../datasets/clipart --finetune --bbox-refine OUTPUT_DIR logs/retinanet_R_101_FPN_voc/voc2clipart/phase2 )

    劳烦作者费心给我这个废物一些指导

    object detection 
    opened by shishi-jie 3
Releases(v0.4)
Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022