[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

Overview

PointDSC repository

PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency", by Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai.

This paper focus on outlier rejection for 3D point clouds registration. If you find this project useful, please cite:

@article{bai2021pointdsc,
  title={{PointDSC}: {R}obust {P}oint {C}loud {R}egistration using {D}eep {S}patial {C}onsistency},
  author={Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai},
  journal={CVPR},
  year={2021}
}

Introduction

Removing outlier correspondences is one of the critical steps for successful feature-based point cloud registration. Despite the increasing popularity of introducing deep learning techniques in this field, spatial consistency, which is essentially established by a Euclidean transformation between point clouds, has received almost no individual attention in existing learning frameworks. In this paper, we present PointDSC, a novel deep neural network that explicitly incorporates spatial consistency for pruning outlier correspondences. First, we propose a nonlocal feature aggregation module, weighted by both feature and spatial coherence, for feature embedding of the input correspondences. Second, we formulate a differentiable spectral matching module, supervised by pairwise spatial compatibility, to estimate the inlier confidence of each correspondence from the embedded features. With modest computation cost, our method outperforms the state-of-the-art hand-crafted and learning-based outlier rejection approaches on several real-world datasets by a significant margin. We also show its wide applicability by combining PointDSC with different 3D local descriptors.

fig0

Requirements

If you are using conda, you may configure PointDSC as:

conda env create -f environment.yml
conda activate pointdsc

If you also want to use FCGF as the 3d local descriptor, please install MinkowskiEngine v0.5.0 and download the FCGF model (pretrained on 3DMatch) from here.

Demo

We provide a small demo to extract dense FPFH descriptors for two point cloud, and register them using PointDSC. The ply files are saved in the demo_data folder, which can be replaced by your own data. Please use model pretrained on 3DMatch for indoor RGB-D scans and model pretrained on KITTI for outdoor LiDAR scans. To try the demo, please run

python demo_registration.py --chosen_snapshot [PointDSC_3DMatch_release/PointDSC_KITTI_release] --descriptor [fcgf/fpfh]

For challenging cases, we recommend to use learned feature descriptors like FCGF or D3Feat.

Dataset Preprocessing

3DMatch

The raw point clouds of 3DMatch can be downloaded from FCGF repo. The test set point clouds and the ground truth poses can be downloaded from 3DMatch Geometric Registration website. Please make sure the data folder contains the following:

.                          
├── fragments                 
│   ├── 7-scene-redkitechen/       
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1/      
│   └── ...                
├── gt_result                   
│   ├── 7-scene-redkitechen-evaluation/   
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1-evaluation/
│   └── ...         
├── threedmatch            
│   ├── *.npz
│   └── *.txt                            

To reduce the training time, we pre-compute the 3D local descriptors (FCGF or FPFH) so that we can directly build the input correspondence using NN search during training. Please use misc/cal_fcgf.py or misc/cal_fpfh.py to extract FCGF or FPFH descriptors. Here we provide the pre-computed descriptors for the 3DMatch test set.

KITTI

The raw point clouds can be download from KITTI Odometry website. Please follow the similar steps as 3DMatch dataset for pre-processing.

Augmented ICL-NUIM

Data can be downloaded from Redwood website. Details can be found in multiway/README.md

Pretrained Model

We provide the pre-trained model of 3DMatch in snapshot/PointDSC_3DMatch_release and KITTI in snapshot/PointDSC_KITTI_release.

Instructions to training and testing

3DMatch

The training and testing on 3DMatch dataset can be done by running

python train_3dmatch.py

python evaluation/test_3DMatch.py --chosen_snapshot [exp_id] --use_icp False

where the exp_id should be replaced by the snapshot folder name for testing (e.g. PointDSC_3DMatch_release). The testing results will be saved in logs/. The training config can be changed in config.py. We also provide the scripts to test the traditional outlier rejection baselines on 3DMatch in baseline_scripts/baseline_3DMatch.py.

KITTI

Similarly, the training and testing of KITTI data set can be done by running

python train_KITTI.py

python evaluation/test_KITTI.py --chosen_snapshot [exp_id] --use_icp False

We also provide the scripts to test the traditional outlier rejection baselines on KITTI in baseline_scripts/baseline_KITTI.py.

Augmemented ICL-NUIM

The detailed guidance of evaluating our method in multiway registration tasks can be found in multiway/README.md

3DLoMatch

We also evaluate our method on a recently proposed benchmark 3DLoMatch following OverlapPredator,

python evaluation/test_3DLoMatch.py --chosen_snapshot [exp_id] --descriptor [fcgf/predator] --num_points 5000

If you want to evaluate predator descriptor with PointDSC, you first need to follow the offical instruction of OverlapPredator to extract the features.

Contact

If you run into any problems or have questions, please create an issue or contact [email protected]

Acknowledgments

We thank the authors of

for open sourcing their methods.

Owner
PhD candidate at HKUST.
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022