[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

Overview

PointDSC repository

PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency", by Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai.

This paper focus on outlier rejection for 3D point clouds registration. If you find this project useful, please cite:

@article{bai2021pointdsc,
  title={{PointDSC}: {R}obust {P}oint {C}loud {R}egistration using {D}eep {S}patial {C}onsistency},
  author={Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu and Chiew-Lan Tai},
  journal={CVPR},
  year={2021}
}

Introduction

Removing outlier correspondences is one of the critical steps for successful feature-based point cloud registration. Despite the increasing popularity of introducing deep learning techniques in this field, spatial consistency, which is essentially established by a Euclidean transformation between point clouds, has received almost no individual attention in existing learning frameworks. In this paper, we present PointDSC, a novel deep neural network that explicitly incorporates spatial consistency for pruning outlier correspondences. First, we propose a nonlocal feature aggregation module, weighted by both feature and spatial coherence, for feature embedding of the input correspondences. Second, we formulate a differentiable spectral matching module, supervised by pairwise spatial compatibility, to estimate the inlier confidence of each correspondence from the embedded features. With modest computation cost, our method outperforms the state-of-the-art hand-crafted and learning-based outlier rejection approaches on several real-world datasets by a significant margin. We also show its wide applicability by combining PointDSC with different 3D local descriptors.

fig0

Requirements

If you are using conda, you may configure PointDSC as:

conda env create -f environment.yml
conda activate pointdsc

If you also want to use FCGF as the 3d local descriptor, please install MinkowskiEngine v0.5.0 and download the FCGF model (pretrained on 3DMatch) from here.

Demo

We provide a small demo to extract dense FPFH descriptors for two point cloud, and register them using PointDSC. The ply files are saved in the demo_data folder, which can be replaced by your own data. Please use model pretrained on 3DMatch for indoor RGB-D scans and model pretrained on KITTI for outdoor LiDAR scans. To try the demo, please run

python demo_registration.py --chosen_snapshot [PointDSC_3DMatch_release/PointDSC_KITTI_release] --descriptor [fcgf/fpfh]

For challenging cases, we recommend to use learned feature descriptors like FCGF or D3Feat.

Dataset Preprocessing

3DMatch

The raw point clouds of 3DMatch can be downloaded from FCGF repo. The test set point clouds and the ground truth poses can be downloaded from 3DMatch Geometric Registration website. Please make sure the data folder contains the following:

.                          
├── fragments                 
│   ├── 7-scene-redkitechen/       
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1/      
│   └── ...                
├── gt_result                   
│   ├── 7-scene-redkitechen-evaluation/   
│   ├── sun3d-home_at-home_at_scan1_2013_jan_1-evaluation/
│   └── ...         
├── threedmatch            
│   ├── *.npz
│   └── *.txt                            

To reduce the training time, we pre-compute the 3D local descriptors (FCGF or FPFH) so that we can directly build the input correspondence using NN search during training. Please use misc/cal_fcgf.py or misc/cal_fpfh.py to extract FCGF or FPFH descriptors. Here we provide the pre-computed descriptors for the 3DMatch test set.

KITTI

The raw point clouds can be download from KITTI Odometry website. Please follow the similar steps as 3DMatch dataset for pre-processing.

Augmented ICL-NUIM

Data can be downloaded from Redwood website. Details can be found in multiway/README.md

Pretrained Model

We provide the pre-trained model of 3DMatch in snapshot/PointDSC_3DMatch_release and KITTI in snapshot/PointDSC_KITTI_release.

Instructions to training and testing

3DMatch

The training and testing on 3DMatch dataset can be done by running

python train_3dmatch.py

python evaluation/test_3DMatch.py --chosen_snapshot [exp_id] --use_icp False

where the exp_id should be replaced by the snapshot folder name for testing (e.g. PointDSC_3DMatch_release). The testing results will be saved in logs/. The training config can be changed in config.py. We also provide the scripts to test the traditional outlier rejection baselines on 3DMatch in baseline_scripts/baseline_3DMatch.py.

KITTI

Similarly, the training and testing of KITTI data set can be done by running

python train_KITTI.py

python evaluation/test_KITTI.py --chosen_snapshot [exp_id] --use_icp False

We also provide the scripts to test the traditional outlier rejection baselines on KITTI in baseline_scripts/baseline_KITTI.py.

Augmemented ICL-NUIM

The detailed guidance of evaluating our method in multiway registration tasks can be found in multiway/README.md

3DLoMatch

We also evaluate our method on a recently proposed benchmark 3DLoMatch following OverlapPredator,

python evaluation/test_3DLoMatch.py --chosen_snapshot [exp_id] --descriptor [fcgf/predator] --num_points 5000

If you want to evaluate predator descriptor with PointDSC, you first need to follow the offical instruction of OverlapPredator to extract the features.

Contact

If you run into any problems or have questions, please create an issue or contact [email protected]

Acknowledgments

We thank the authors of

for open sourcing their methods.

Owner
PhD candidate at HKUST.
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022