DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Overview

DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Gabriele Tiboni, Karol Arndt, Ville Kyrki.

This repository contains the code for the paper: "DROPO: Sim-to-Real Transfer with Offline Domain Randomization" submitted to the IEEE Robotics and Automation Letters (RAL) Journal, in December 2021.

Abstract: In recent years, domain randomization has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies; however, coming up with optimal randomization ranges can be difficult. In this paper, we introduce DROPO, a novel method for estimating domain randomization ranges for a safe sim-to-real transfer. Unlike prior work, DROPO only requires a precollected offline dataset of trajectories, and does not converge to point estimates. We demonstrate that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a distribution capable of compensating for an unmodelled phenomenon. We also evaluate the method on two zero-shot sim-to-real transfer scenarios, showing a successful domain transfer and improved performance over prior methods.

dropo_general_framework

Requirements

This repository makes use of the following external libraries:

How to launch DROPO

1. Dataset collection and formatting

Prior to running the code, an offline dataset of trajectories from the target (real) environment needs to be collected. This dataset can be generated either by rolling out any previously trained policy, or by kinesthetic guidance of the robot.

The dataset object must be formatted as follows:

n : int
      state space dimensionality
a : int
      action space dimensionality
t : int
      number of state transitions

dataset : dict,
      object containing offline-collected trajectories

dataset['observations'] : ndarray
      2D array (t, n) containing the current state information for each timestep

dataset['next_observations'] : ndarray
      2D array (t, n) containing the next-state information for each timestep

dataset['actions'] : ndarray
      2D array (t, a) containing the action commanded to the agent at the current timestep

dataset['terminals'] : ndarray
      1D array (t,) of booleans indicating whether or not the current state transition is terminal (ends the episode)

2. Add environment-specific methods

Augment the simulated environment with the following methods to allow Domain Randomization and its optimization:

  • env.set_task(*new_task) # Set new dynamics parameters

  • env.get_task() # Get current dynamics parameters

  • mjstate = env.get_sim_state() # Get current internal mujoco state

  • env.get_initial_mjstate(state) and env.get_full_mjstate # Get the internal mujoco state from given state

  • env.set_sim_state(mjstate) # Set the simulator to a specific mujoco state

  • env.set_task_search_bounds() # Set the search bound for the mean of the dynamics parameters

  • (optional) env.get_task_lower_bound(i) # Get lower bound for i-th dynamics parameter

  • (optional) env.get_task_upper_bound(i) # Get upper bound for i-th dynamics parameter

3. Run test_dropo.py

Sample file to launch DROPO.

Test DROPO on the Hopper environment

This repository contains a ready-to-use Hopper environment implementation (based on the code from OpenAI gym) and an associated offline dataset to run quick DROPO experiments on Hopper, with randomized link masses. The dataset consists of 20 trajectories collected on the ground truth hopper environment with mass values [3.53429174, 3.92699082, 2.71433605, 5.0893801].

E.g.:

  • Quick test (10 sparse transitions and 1000 obj. function evaluations only):

    python3 test_dropo.py --sparse-mode -n 10 -l 1 --budget 1000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs

  • Advanced test (2 trajectories are considered, with 5000 obj. function evaluations, and 10 parallel workers):

    python3 test_dropo.py -n 2 -l 1 --budget 5000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs --now 10

test_dropo.py will return the optimized domain randomization distribution, suitable for training a reinforcement learning policy on the same simulated environment.

Cite us

If you use this repository, please consider citing

    @misc{tiboni2022dropo,
          title={DROPO: Sim-to-Real Transfer with Offline Domain Randomization},
          author={Gabriele Tiboni and Karol Arndt and Ville Kyrki},
          year={2022},
          eprint={2201.08434},
          archivePrefix={arXiv},
          primaryClass={cs.RO}
    }
Owner
Gabriele Tiboni
First-year Ellis PhD student in Artificial Intelligence @ Politecnico di Torino.
Gabriele Tiboni
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022