This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

Overview

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator

This is a Pytorch implementation for the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator".

Requirement

  • python 3.7.3
  • pytorch 1.2.0
  • tensorflow 2.0.0
  • torchtext 0.4.0
  • torchvision 0.4.0
  • mnist

Data preparation

Training

  • Run 1_train.sh to train our proposed loss function RMCosGAN along with other loss functions on four datasets.

Appendix

Network Architectures

DCGAN Architecture for CIFAR-10, MNIST and STL-10 datasets

Operation Filter Units Non Linearity Normalization
Generator G(z)
Linear 512 None None
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 64 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 64 Leaky-ReLU Spectral
Conv2D 64 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral

DCGAN Architecture for CAT dataset

Operation Filter Units Non Linearity Normalization
Generator G(z)
Trans.Conv2D 1024 ReLU Batch
Trans.Conv2D 512 ReLU Batch
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral
Conv2D 1024 Leaky-ReLU Spectral

Experimental results

60 randomly-generated images with RMCosGAN at FID=31.34 trained on CIFAR-10 dataset

60 randomly-generated images with RMCosGAN at FID=13.17 trained on MNIST dataset

60 randomly-generated images with RMCosGAN FID=52.16 trained on STL-10 dataset

60 randomly-generated images with RMCosGAN at FID=9.48 trained on CAT dataset

Citation

Please cite our paper if RMCosGAN is used:

@article{RMCosGAN,
  title={An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator},
  author={Cuong Nguyen, Tien-Dung Cao, Tram Truong-Huu, Binh T.Nguyen},
  journal={},
  year={}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Cuong Nguyen ([email protected]),

Tien-Dung Cao ([email protected]),

Tram Truong-Huu ([email protected]),

Binh T.Nguyen ([email protected])

Owner
Cuong Nguyen
AI/DL researcher
Cuong Nguyen
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022