This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

Overview

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator

This is a Pytorch implementation for the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator".

Requirement

  • python 3.7.3
  • pytorch 1.2.0
  • tensorflow 2.0.0
  • torchtext 0.4.0
  • torchvision 0.4.0
  • mnist

Data preparation

Training

  • Run 1_train.sh to train our proposed loss function RMCosGAN along with other loss functions on four datasets.

Appendix

Network Architectures

DCGAN Architecture for CIFAR-10, MNIST and STL-10 datasets

Operation Filter Units Non Linearity Normalization
Generator G(z)
Linear 512 None None
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 64 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 64 Leaky-ReLU Spectral
Conv2D 64 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral

DCGAN Architecture for CAT dataset

Operation Filter Units Non Linearity Normalization
Generator G(z)
Trans.Conv2D 1024 ReLU Batch
Trans.Conv2D 512 ReLU Batch
Trans.Conv2D 256 ReLU Batch
Trans.Conv2D 128 ReLU Batch
Trans.Conv2D 3 Tanh None
Discriminator D(x)
Conv2D 128 Leaky-ReLU Spectral
Conv2D 256 Leaky-ReLU Spectral
Conv2D 512 Leaky-ReLU Spectral
Conv2D 1024 Leaky-ReLU Spectral

Experimental results

60 randomly-generated images with RMCosGAN at FID=31.34 trained on CIFAR-10 dataset

60 randomly-generated images with RMCosGAN at FID=13.17 trained on MNIST dataset

60 randomly-generated images with RMCosGAN FID=52.16 trained on STL-10 dataset

60 randomly-generated images with RMCosGAN at FID=9.48 trained on CAT dataset

Citation

Please cite our paper if RMCosGAN is used:

@article{RMCosGAN,
  title={An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator},
  author={Cuong Nguyen, Tien-Dung Cao, Tram Truong-Huu, Binh T.Nguyen},
  journal={},
  year={}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Cuong Nguyen ([email protected]),

Tien-Dung Cao ([email protected]),

Tram Truong-Huu ([email protected]),

Binh T.Nguyen ([email protected])

Owner
Cuong Nguyen
AI/DL researcher
Cuong Nguyen
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021