PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

Overview

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition.


Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. Conformer combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies.

This repository contains only model code, but you can train with conformer with this repository.

Installation

This project recommends Python 3.7 or higher. We recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • Numpy: pip install numpy (Refer here for problem installing Numpy).
  • Pytorch: Refer to PyTorch website to install the version w.r.t. your environment.

Install from source

Currently we only support installation from source code using setuptools. Checkout the source code and run the following commands:

pip install -e .

Usage

import torch
import torch.nn as nn
from conformer import Conformer

batch_size, sequence_length, dim = 3, 12345, 80

cuda = torch.cuda.is_available()  
device = torch.device('cuda' if cuda else 'cpu')

inputs = torch.rand(batch_size, sequence_length, dim).to(device)
input_lengths = torch.IntTensor([12345, 12300, 12000])
targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                            [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                            [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
target_lengths = torch.LongTensor([9, 8, 7])

model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                  encoder_dim=32, num_encoder_layers=3, 
                                  decoder_dim=32, device=device)).to(device)

# Forward propagate
outputs = model(inputs, input_lengths, targets, target_lengths)

# Recognize input speech
outputs = model.module.recognize(inputs, input_lengths)

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on github or
contacts [email protected] please.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

Reference

Author

Comments
  • Outputs differ from Targets

    Outputs differ from Targets

    @sooftware Can you kindly explain to me why the output lengths and targets are so different? :/ (also in outputs I get negative floats). Example shown below

    The outputs are of shape [32,490,16121] (where 16121 is the len of my vocab) What is the 490 dimensions Also the outputs are probabilities right?

    (outputs)
    tensor([[[-9.7001, -9.6490, -9.6463,  ..., -9.6936, -9.6430, -9.7431],
             [-9.6997, -9.6487, -9.6470,  ..., -9.6903, -9.6450, -9.7416],
             [-9.6999, -9.6477, -9.6479,  ..., -9.6898, -9.6453, -9.7417],
             ...,
             [-9.7006, -9.6449, -9.6513,  ..., -9.6889, -9.6477, -9.7405],
             [-9.7003, -9.6448, -9.6512,  ..., -9.6893, -9.6477, -9.7410],
             [-9.7007, -9.6453, -9.6513,  ..., -9.6892, -9.6466, -9.7403]],
    
            [[-9.6844, -9.6316, -9.6387,  ..., -9.6880, -9.6269, -9.7657],
             [-9.6834, -9.6299, -9.6404,  ..., -9.6872, -9.6283, -9.7642],
             [-9.6834, -9.6334, -9.6387,  ..., -9.6864, -9.6290, -9.7616],
             ...,
             [-9.6840, -9.6299, -9.6431,  ..., -9.6830, -9.6304, -9.7608],
             [-9.6838, -9.6297, -9.6428,  ..., -9.6834, -9.6303, -9.7609],
             [-9.6842, -9.6300, -9.6428,  ..., -9.6837, -9.6292, -9.7599]],
    
            [[-9.6966, -9.6386, -9.6458,  ..., -9.6896, -9.6375, -9.7521],
             [-9.6974, -9.6374, -9.6462,  ..., -9.6890, -9.6369, -9.7516],
             [-9.6974, -9.6405, -9.6456,  ..., -9.6876, -9.6378, -9.7491],
             ...,
             [-9.6978, -9.6336, -9.6493,  ..., -9.6851, -9.6419, -9.7490],
             [-9.6971, -9.6334, -9.6487,  ..., -9.6863, -9.6411, -9.7501],
             [-9.6972, -9.6338, -9.6489,  ..., -9.6867, -9.6396, -9.7497]],
    
            ...,
    
            [[-9.7005, -9.6249, -9.6588,  ..., -9.6762, -9.6557, -9.7555],
             [-9.7028, -9.6266, -9.6597,  ..., -9.6765, -9.6574, -9.7542],
             [-9.7016, -9.6240, -9.6605,  ..., -9.6761, -9.6576, -9.7553],
             ...,
             [-9.7036, -9.6237, -9.6624,  ..., -9.6728, -9.6590, -9.7524],
             [-9.7034, -9.6235, -9.6620,  ..., -9.6735, -9.6589, -9.7530],
             [-9.7038, -9.6240, -9.6622,  ..., -9.6738, -9.6582, -9.7524]],
    
            [[-9.7058, -9.6305, -9.6566,  ..., -9.6739, -9.6557, -9.7466],
             [-9.7061, -9.6273, -9.6569,  ..., -9.6774, -9.6564, -9.7499],
             [-9.7046, -9.6280, -9.6576,  ..., -9.6772, -9.6575, -9.7498],
             ...,
             [-9.7060, -9.6263, -9.6609,  ..., -9.6714, -9.6561, -9.7461],
             [-9.7055, -9.6262, -9.6605,  ..., -9.6723, -9.6558, -9.7469],
             [-9.7058, -9.6270, -9.6606,  ..., -9.6725, -9.6552, -9.7460]],
    
            [[-9.7101, -9.6312, -9.6570,  ..., -9.6736, -9.6551, -9.7420],
             [-9.7102, -9.6307, -9.6579,  ..., -9.6733, -9.6576, -9.7418],
             [-9.7078, -9.6281, -9.6598,  ..., -9.6704, -9.6596, -9.7418],
             ...,
             [-9.7084, -9.6288, -9.6605,  ..., -9.6706, -9.6588, -9.7399],
             [-9.7081, -9.6286, -9.6600,  ..., -9.6714, -9.6584, -9.7406],
             [-9.7085, -9.6291, -9.6601,  ..., -9.6717, -9.6577, -9.7398]]],
           device='cuda:0', grad_fn=<LogSoftmaxBackward0>)
    
    (output_lengths)
    tensor([312, 260, 315, 320, 317, 275, 308, 291, 272, 300, 262, 227, 303, 252,
            298, 256, 303, 251, 284, 259, 263, 286, 209, 262, 166, 194, 149, 212,
            121, 114, 110,  57], device='cuda:0', dtype=torch.int32)
    
    (target_lengths)
    tensor([57, 55, 54, 50, 49, 49, 49, 48, 48, 47, 43, 42, 41, 40, 40, 39, 37, 37,
            36, 36, 36, 35, 34, 33, 29, 27, 26, 24, 20, 19, 17,  9])
    
    

    I am using the following code for training and evaluation

    import torch
    import time
    import sys
    from google.colab import output
    import torch.nn as nn
    from conformer import Conformer
    import torchmetrics
    import random
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    print('Device:', device)
    
    ################################################################################
    
    def train_model(model, optimizer, criterion, loader, metric):
      running_loss = 0.0
      for i, (audio,audio_len, translations, translation_len) in enumerate(loader):
        # with output.use_tags('some_outputs'):
        #   sys.stdout.write('Batch: '+ str(i+1)+'/290')
        #   sys.stdout.flush();
    
        #sorting inputs and targets to have targets in descending order based on len
        sorted_list,sorted_indices=torch.sort(translation_len,descending=True)
    
        sorted_audio=torch.zeros((32,201,1963),dtype=torch.float)
        sorted_audio_len=torch.zeros(32,dtype=torch.int)
        sorted_translations=torch.zeros((32,78),dtype=torch.int)
        sorted_translation_len=sorted_list
    
        for index, contentof in enumerate(translation_len):
          sorted_audio[index]=audio[sorted_indices[index]]
          sorted_audio_len[index]=audio_len[sorted_indices[index]]
          sorted_translations[index]=translations[sorted_indices[index]]
    
        #transpose inputs from (batch, dim, seq_len) to (batch, seq_len, dim)
        inputs=sorted_audio.to(device)
        inputs=torch.transpose(inputs, 1, 2)
        input_lengths=sorted_audio_len
        targets=sorted_translations.to(device)
        target_lengths=sorted_translation_len
    
        optimizer.zero_grad()
      
        # Forward propagate
        outputs, output_lengths = model(inputs, input_lengths)
        # print(outputs)
    
        # Calculate CTC Loss
        loss = criterion(outputs.transpose(0, 1), targets, output_lengths, target_lengths)
    
        loss.backward()
        optimizer.step()
    
        # print statistics
        running_loss += loss.item()
    
        output.clear(output_tags='some_outputs')
    
      loss_per_epoch=running_loss/(i+1)
      # print(f'Loss: {loss_per_epoch:.3f}')
    
      return loss_per_epoch
    
    ################################################################################
    
    def eval_model(model, optimizer, criterion, loader, metric):
      running_loss = 0.0
      wer_calc=0.0
      random_index_per_epoch= random.randint(0, 178)
    
      for i, (audio,audio_len, translations, translation_len) in enumerate(loader):
        # with output.use_tags('some_outputs'):
        #   sys.stdout.write('Batch: '+ str(i+1)+'/72')
        #   sys.stdout.flush();
    
        #sorting inputs and targets to have targets in descending order based on len
        sorted_list,sorted_indices=torch.sort(translation_len,descending=True)
    
        sorted_audio=torch.zeros((32,201,1963),dtype=torch.float)
        sorted_audio_len=torch.zeros(32,dtype=torch.int)
        sorted_translations=torch.zeros((32,78),dtype=torch.int)
        sorted_translation_len=sorted_list
    
        for index, contentof in enumerate(translation_len):
          sorted_audio[index]=audio[sorted_indices[index]]
          sorted_audio_len[index]=audio_len[sorted_indices[index]]
          sorted_translations[index]=translations[sorted_indices[index]]
    
        #transpose inputs from (batch, dim, seq_len) to (batch, seq_len, dim)
        inputs=sorted_audio.to(device)
        inputs=torch.transpose(inputs, 1, 2)
        input_lengths=sorted_audio_len
        targets=sorted_translations.to(device)
        target_lengths=sorted_translation_len
    
        # Forward propagate
        outputs, output_lengths = model(inputs, input_lengths)
        # print(outputs)
    
        # Calculate CTC Loss
        loss = criterion(outputs.transpose(0, 1), targets, output_lengths, target_lengths)
    
        print(output_lengths)
        print(target_lengths)
        # outputs_in_words=words_vocab.convert_pred_to_words(outputs.transpose(0, 1))
        # targets_in_words=words_vocab.convert_pred_to_words(targets)
        # wer=metrics_calculation(metric, outputs_in_words,targets_in_words)
        
        break
    
        if (i==random_index_per_epoch):
            print(outputs_in_words,targets_in_words)
    
        running_loss += loss.item()
        # wer_calc += wer
    
        output.clear(output_tags='some_outputs')
    
      loss_per_epoch=running_loss/(i+1)
      wer_per_epoch=wer_calc/(i+1)
    
      return loss_per_epoch, wer_per_epoch
    
    ################################################################################
    
    def train_eval_model(epochs):
      #conformer model init
      model = nn.DataParallel(Conformer(num_classes=16121, input_dim=201, encoder_dim=32, num_encoder_layers=1)).to(device)
    
      # Optimizers specified in the torch.optim package
      optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
    
      #loss function
      criterion = nn.CTCLoss().to(device)
    
      #metrics init
      metric=torchmetrics.WordErrorRate()
    
      for epoch in range(epochs):
        print("Epoch", epoch+1)
    
        ############################################################################
        #TRAINING      
        model.train()
        print("Training")
    
        # epoch_loss=train_model(model=model,optimizer=optimizer, criterion=criterion, loader=train_loader, metric=metric)
    
        # print(f'Loss: {epoch_loss:.3f}')
        # print(f'WER: {epoch_wer:.3f}')
    
        ############################################################################
        #EVALUATION
        model.train(False)
        print("Validation")
    
        epoch_val_loss, epoch_val_wer=eval_model(model=model,optimizer=optimizer, criterion=criterion, loader=test_loader, metric=metric)
        
        print(f'Loss: {epoch_val_loss:.3f}')     
        print(f'WER: {epoch_val_wer:.3f}')   
    
    ################################################################################
    
    def metrics_calculation(metric, predictions, targets):
        print(predictions)
        print(targets)
        wer=metric(predictions, targets)
    
        return wer
    
    
    
    train_eval_model(1)
    
    opened by jcgeo9 8
  • question about the relative shift function

    question about the relative shift function

    Hi @sooftware, thank you for coding this repo. I have a question about the relative shift function: https://github.com/sooftware/conformer/blob/c76ff16d01b149ae518f3fe66a3dd89c9ecff2fc/conformer/attention.py#L105 I don't quite understand how this function works. Could you elaborate on this?

    An example input and output of size 4 is shown below, which does not really make sense to me.

    Input:

    tensor([[[[-0.9623, -0.3168, -1.1478, -1.3076],
              [ 0.5907, -0.0391, -0.1849, -0.6368],
              [-0.3956,  0.2142, -0.6415,  0.2196],
              [-0.8194, -0.2601,  1.1337, -0.3478]]]])
    

    output:

    tensor([[[[-1.3076,  0.0000,  0.5907, -0.0391],
              [-0.1849, -0.6368,  0.0000, -0.3956],
              [ 0.2142, -0.6415,  0.2196,  0.0000],
              [-0.8194, -0.2601,  1.1337, -0.3478]]]])
    

    Thank you!

    opened by ChanganVR 6
  • Decoding predictions to strings

    Decoding predictions to strings

    Hi, thanks for the great repo.

    the README Usage example gives outputs as a torch tensor of ints. How would you suggest decoding these to strings (the actual speech)?

    Thanks!

    opened by Andrew-Brown1 3
  • mat1 and mat2 shapes cannot be multiplied (1323x9248 and 1568x32)

    mat1 and mat2 shapes cannot be multiplied (1323x9248 and 1568x32)

    These are the shapes of my input, input_len, target, target_len where batch size=27 image

    This is the setup I am running (only using first batch to check that is working before training with all the batches) image

    This is the error I am getting image

    I need some assistance here please:)

    opened by jcgeo9 2
  • error when reproducing the example of use (RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10])

    error when reproducing the example of use (RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10])

    Running the code results in an error:

    import torch
    print(torch.__version__)
    import torch.nn as nn
    from conformer import Conformer
    
    batch_size, sequence_length, dim = 3, 12345, 80
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    
    inputs = torch.rand(batch_size, sequence_length, dim).to(device)
    input_lengths = torch.IntTensor([12345, 12300, 12000])
    targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                                [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                                [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
    target_lengths = torch.LongTensor([9, 8, 7])
    
    model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                      encoder_dim=32, num_encoder_layers=3, 
                                      decoder_dim=32, device=device)).to(device)
    
    # Forward propagate
    outputs = model(inputs, input_lengths, targets, target_lengths)
    
    # Recognize input speech
    outputs = model.module.recognize(inputs, input_lengths)
    
    
    
    1.9.0+cu111
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-12-eea3aeffaf58> in <module>
         21 
         22 # Forward propagate
    ---> 23 outputs = model(inputs, input_lengths, targets, target_lengths)
         24 
         25 # Recognize input speech
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
       1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
       1050                 or _global_forward_hooks or _global_forward_pre_hooks):
    -> 1051             return forward_call(*input, **kwargs)
       1052         # Do not call functions when jit is used
       1053         full_backward_hooks, non_full_backward_hooks = [], []
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py in forward(self, *inputs, **kwargs)
        167             replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
        168             outputs = self.parallel_apply(replicas, inputs, kwargs)
    --> 169             return self.gather(outputs, self.output_device)
        170 
        171     def replicate(self, module, device_ids):
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py in gather(self, outputs, output_device)
        179 
        180     def gather(self, outputs, output_device):
    --> 181         return gather(outputs, output_device, dim=self.dim)
        182 
        183 
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py in gather(outputs, target_device, dim)
         76     # Setting the function to None clears the refcycle.
         77     try:
    ---> 78         res = gather_map(outputs)
         79     finally:
         80         gather_map = None
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py in gather_map(outputs)
         61         out = outputs[0]
         62         if isinstance(out, torch.Tensor):
    ---> 63             return Gather.apply(target_device, dim, *outputs)
         64         if out is None:
         65             return None
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/_functions.py in forward(ctx, target_device, dim, *inputs)
         73             ctx.unsqueezed_scalar = False
         74         ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs)
    ---> 75         return comm.gather(inputs, ctx.dim, ctx.target_device)
         76 
         77     @staticmethod
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/comm.py in gather(tensors, dim, destination, out)
        233                 'device object or string instead, e.g., "cpu".')
        234         destination = _get_device_index(destination, allow_cpu=True, optional=True)
    --> 235         return torch._C._gather(tensors, dim, destination)
        236     else:
        237         if destination is not None:
    
    RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10]
    

    I am using version Python 3.8.8. Which version should it work with?

    opened by sovse 2
  • The to.(self.device) in return

    The to.(self.device) in return

    The inputs.to(self.device) in ConformerConvmodule and FeedForwardModule will cause the network graph in tensorboard to fork and appear kind of messy. Is there any special reason to write like that? Since in most cases we should have send both the model and tensor to the device before we input the tensor to the model, probably no more sending action is needed?

    opened by panjiashu 2
  • Invalid size error when running usage in README

    Invalid size error when running usage in README

    Hello sooftware, thank you very much for your wonderful work!

    When I run the sample code in Usage of README:

    import torch
    import torch.nn as nn
    from conformer import Conformer
    
    batch_size, sequence_length, dim = 3, 12345, 80
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    
    inputs = torch.rand(batch_size, sequence_length, dim).to(device)
    input_lengths = torch.IntTensor([12345, 12300, 12000])
    targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                                [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                                [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
    target_lengths = torch.LongTensor([9, 8, 7])
    
    model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                      encoder_dim=32, num_encoder_layers=3, 
                                      decoder_dim=32, device=device)).to(device)
    
    # Forward propagate
    outputs = model(inputs, input_lengths, targets, target_lengths)
    
    # Recognize input speech
    outputs = model.module.recognize(inputs, input_lengths)
    

    I got this error:

    Traceback (most recent call last):
      File "/home/xuchutian/ASR/sooftware-conformer/try.py", line 36, in <module>
        outputs = model(inputs, input_lengths, targets, target_lengths)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 156, in forward
        return self.gather(outputs, self.output_device)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 168, in gather
        return gather(outputs, output_device, dim=self.dim)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 68, in gather
        res = gather_map(outputs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 55, in gather_map
        return Gather.apply(target_device, dim, *outputs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/_functions.py", line 68, in forward
        return comm.gather(inputs, ctx.dim, ctx.target_device)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/cuda/comm.py", line 165, in gather
        return torch._C._gather(tensors, dim, destination)
    RuntimeError: Gather got an input of invalid size: got [1, 3085, 8, 10], but expected [1, 3085, 9, 10]
    

    May I ask how to solve this error?

    Thank you very much.

    opened by chutianxu 2
  • use relative import

    use relative import

    The import path is now absolute, which requires users to install or configuring the python path before using. However, this can be improved with relative import, so users can use the package without installing it first.

    opened by bridgream 1
  • Remove device from the argument list

    Remove device from the argument list

    This PR solve #33 by removing device from the argument list, which will require the user to manually put input tensors to device as done in the example code in README.

    The property solution mentioned in #33 is not adopted as it does work with nn.DataParallel.

    When the devices of input tensor and module parameters match, the following to device on the input tensor is not required, which are removed in this PR:

    https://github.com/sooftware/conformer/blob/348e8af6c156dae19e311697cbb22b9581880a12/conformer/encoder.py#L117

    Besides, as positional encoding is created from a buffer whose device is changed with the module, we don't have to call to device here, which is also removed in this PR.

    https://github.com/sooftware/conformer/blob/610a77667aafe533a85001298c522e7079503da4/conformer/attention.py#L147

    opened by enhuiz 1
  • Switching device

    Switching device

    Hi. I notice the model requires passing the device as an argument, which may have not been decided yet at the point of the module initialization. Once the device is decided, it seems we cannot easily change it. Do you consider making the device switchable? One solution may be instead of passing the device, add an attribute:

    @property
    def device(self):
        return next(self.parameters()).device
    
    opened by enhuiz 1
  • cannot import name 'Conformer'

    cannot import name 'Conformer'

    Hi when I tried to import conformer, I got this issue >>> from conformer import Conformer Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/workspace/bert/conformer/conformer.py", line 3, in <module> from conformer import Conformer ImportError: cannot import name 'Conformer' from partially initialized module 'conformer' (most likely due to a circular import) (/workspace/bert/conformer/conformer.py) I did as the installation instruction. Would you please see where I might be wrong? Thanks.

    opened by cyy857 1
  • Fix relative positional multi-head attention layer

    Fix relative positional multi-head attention layer

    I referred to fairseq's conformer layer multi-head attention. [code] I also confirmed that it is training.

    1. math.sqrt(dim) -> math.sqrt(d_head)
    2. Add relative positional encoding module
    3. Fix _relative_shift method - input : B X n_head X T X 2T-1 - output : B X n_head X T X T
    opened by upskyy 0
  • Feature Extraction using Pre-trained Conformer Model

    Feature Extraction using Pre-trained Conformer Model

    Is there any possibility to use pre-trained conformer model for feature extraction on another speech dataset. Have you uploaded your pre-trained model and is there any tutorial how to extract embeddings ? Thank you

    opened by shakeel608 0
  • export onnx

    export onnx

    Hi, I am a little confused, if I want to export the onnx, should I use the forward or the recognize function? The difference seems to be that in the recognize function, the decoder loop num is adaptive according to the encoder outputs

    opened by pengaoao 1
Releases(v1.0)
Owner
Soohwan Kim
Current AI Research Engineer at Kakao Brain.
Soohwan Kim
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022