Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Overview

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies"

This is the implementation of the paper "Learning Not to Reconstruct Anomalies" (BMVC 2021).

Dependencies

  • Python 3.6
  • PyTorch = 1.7.0
  • Numpy
  • Sklearn

Datasets

  • USCD Ped2 [dataset]
  • CUHK Avenue [dataset]
  • ShanghaiTech [dataset]
  • CIFAR-100 (for patch based pseudo anomalies)
  • ImageNet (for patch based pseudo anomalies)

Download the datasets into dataset folder, like ./dataset/ped2/, ./dataset/avenue/, ./dataset/shanghai/, ./dataset/cifar100/, ./dataset/imagenet/

Training

git clone https://github.com/aseuteurideu/LearningNotToReconstructAnomalies
  • Training baseline
python train.py --dataset_type ped2
  • Training patch based model
python train.py --dataset_type ped2 --pseudo_anomaly_cifar_inpainting_smoothborder 0.2 --max_size 0.5 --max_move 10
  • Training skip frame based model
python train.py --dataset_type ped2 --pseudo_anomaly_jump_inpainting 0.2 --jump 2 3 4 5

Select --dataset_type from ped2, avenue, or shanghai.

For more details, check train.py

Pre-trained models

  • Model in Table 1
Model Dataset AUC Weight
Baseline Ped2 92.49% [ drive ]
Baseline Avenue 81.47% [ drive ]
Baseline ShanghaiTech 71.28% [ drive ]
Patch based Ped2 94.77% [ drive ]
Patch based Avenue 84.91% [ drive ]
Patch based ShanghaiTech 72.46% [ drive ]
Skip frame based Ped2 96.50% [ drive ]
Skip frame based Avenue 84.67% [ drive ]
Skip frame based ShanghaiTech 75.97% [ drive ]
  • Various patch based models on Ped2 (Fig. 5(c))
Intruder Dataset Patching Technique AUC Weight
CIFAR-100 SmoothMixS 94.77% [ drive ]
ImageNet SmoothMixS 93.34% [ drive ]
ShanghaiTech SmoothMixS 94.74% [ drive ]
Ped2 SmoothMixS 94.15% [ drive ]
CIFAR-100 SmoothMixC 94.22% [ drive ]
CIFAR-100 CutMix 93.54% [ drive ]
CIFAR-100 MixUp-patch 94.52% [ drive ]

Evaluation

  • Test the model
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth
  • Test the model and save result image
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --img_dir folder_path_to_save_image_results
  • Test the model and generate demonstration video frames
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --vid_dir folder_path_to_save_video_results

Then compile the frames into video. For example, to compile the first video in ubuntu:

ffmpeg -framerate 10 -i frame_00_%04d.png -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p video_00.mp4

Bibtex

@inproceedings{astrid2021learning,
  title={Learning Memory-guided Normality for Anomaly Detection},
  author={Astrid, Marcella and Zaheer, Muhammad Zaigham and Lee, Jae-Yeong and Lee, Seung-Ik},
  booktitle={BMVC},
  year={2021}
}

Acknowledgement

The code is built on top of code provided by Park et al. [ github ] and Gong et al. [ github ]

Owner
Marcella Astrid
PhD candidate at University of Science and Technology, ETRI campus, South Korea
Marcella Astrid
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022