Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Overview

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies"

This is the implementation of the paper "Learning Not to Reconstruct Anomalies" (BMVC 2021).

Dependencies

  • Python 3.6
  • PyTorch = 1.7.0
  • Numpy
  • Sklearn

Datasets

  • USCD Ped2 [dataset]
  • CUHK Avenue [dataset]
  • ShanghaiTech [dataset]
  • CIFAR-100 (for patch based pseudo anomalies)
  • ImageNet (for patch based pseudo anomalies)

Download the datasets into dataset folder, like ./dataset/ped2/, ./dataset/avenue/, ./dataset/shanghai/, ./dataset/cifar100/, ./dataset/imagenet/

Training

git clone https://github.com/aseuteurideu/LearningNotToReconstructAnomalies
  • Training baseline
python train.py --dataset_type ped2
  • Training patch based model
python train.py --dataset_type ped2 --pseudo_anomaly_cifar_inpainting_smoothborder 0.2 --max_size 0.5 --max_move 10
  • Training skip frame based model
python train.py --dataset_type ped2 --pseudo_anomaly_jump_inpainting 0.2 --jump 2 3 4 5

Select --dataset_type from ped2, avenue, or shanghai.

For more details, check train.py

Pre-trained models

  • Model in Table 1
Model Dataset AUC Weight
Baseline Ped2 92.49% [ drive ]
Baseline Avenue 81.47% [ drive ]
Baseline ShanghaiTech 71.28% [ drive ]
Patch based Ped2 94.77% [ drive ]
Patch based Avenue 84.91% [ drive ]
Patch based ShanghaiTech 72.46% [ drive ]
Skip frame based Ped2 96.50% [ drive ]
Skip frame based Avenue 84.67% [ drive ]
Skip frame based ShanghaiTech 75.97% [ drive ]
  • Various patch based models on Ped2 (Fig. 5(c))
Intruder Dataset Patching Technique AUC Weight
CIFAR-100 SmoothMixS 94.77% [ drive ]
ImageNet SmoothMixS 93.34% [ drive ]
ShanghaiTech SmoothMixS 94.74% [ drive ]
Ped2 SmoothMixS 94.15% [ drive ]
CIFAR-100 SmoothMixC 94.22% [ drive ]
CIFAR-100 CutMix 93.54% [ drive ]
CIFAR-100 MixUp-patch 94.52% [ drive ]

Evaluation

  • Test the model
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth
  • Test the model and save result image
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --img_dir folder_path_to_save_image_results
  • Test the model and generate demonstration video frames
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --vid_dir folder_path_to_save_video_results

Then compile the frames into video. For example, to compile the first video in ubuntu:

ffmpeg -framerate 10 -i frame_00_%04d.png -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p video_00.mp4

Bibtex

@inproceedings{astrid2021learning,
  title={Learning Memory-guided Normality for Anomaly Detection},
  author={Astrid, Marcella and Zaheer, Muhammad Zaigham and Lee, Jae-Yeong and Lee, Seung-Ik},
  booktitle={BMVC},
  year={2021}
}

Acknowledgement

The code is built on top of code provided by Park et al. [ github ] and Gong et al. [ github ]

Owner
Marcella Astrid
PhD candidate at University of Science and Technology, ETRI campus, South Korea
Marcella Astrid
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023