Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Overview

Face2webtoon

merge_from_ofoct (2)

merge_from_ofoct (1)

Introduction

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

Webtoon Dataset

data

I used anime face detector. Since face detector is not that good at detecting the faces from webtoon, I could gather only 1400 webtoon face images.

Baseline 0(U-GAT-IT)

I used U-GAT-IT official pytorch implementation. U-GAT-IT is GAN for unpaired image to image translation. By using CAM attention module and adaptive layer instance normalization, it performed well on image translation where considerable shape deformation is required, on various hyperparameter settings. Since shape is very different between two domain, I used this model.

For face data, i used AFAD-Lite dataset from https://github.com/afad-dataset/tarball-lite.

good

gif1

Some results look pretty nice, but many result have lost attributes while transfering.

Missing of Attributes

Gender

gender

Gender information was lost.

Glasses

glasses

A model failed to generate glasses in the webtoon faces.

Result Analysis

To analysis the result, I seperated webtoon dataset to 5 different groups.

group number group name number of data
0 woman_no_glasses 1050
1 man_no_glasses 249
2 man_glasses 17->49
3 woman_glasses 15->38

Even after I collected more data for group 2 and 3, there are severe imbalances between groups. As a result, model failed to translate to few shot groups, for example, group 2 and 3.

U-GAT-IT + Few Shot Transfer

Few shot transfer : https://arxiv.org/abs/2007.13332

Paper review : https://yun905.tistory.com/48

In this paper, authors successfully transfered the knowledge from group with enough data to few shot groups which have only 10~15 data. First, they trained basic model, and made branches for few shot groups.

Basic model

For basic model, I trained U-GAT-IT between only group 0.

basic_model1 basic_model2

Baseline 1 (simple fine-tuning)

For baseline 1, I freeze the bottleneck layers of generator and tried to fine-tune the basic model. I used 38 images(both real/fake) of group 1,2,3, and added 8 images of group 0 to prevent forgetting. I trained for 200k iterations.

1

Model randomly mapped between groups.

Baseline 2 (group classification loss + selective backprop)

0

I attached additional group classifier to discriminator and added group classification loss according to original paper. Images of group 0,1,2,3 were feeded sequentially, and bottleneck layers of generator were updated for group 0 only.

With limited data, bias of FID score is too big. Instead, I used KID

KID*1000
25.95

U-GAT-IT + group classification loss + adaptive discriminator augmentation

ADA is very useful data augmentation method for training GAN with limited data. Although original paper only handles unconditional GANs, I applied ADA to U-GAT-IT which is conditional GAN. Augmentation was applied to both discriminators, because it is expected that preventing the discriminator of the face domain from overfitting would improve the performance of the face generator and therefore the cycle consistency loss would be more meaningful. Only pixel blitting and geometric transformation have been implemented, as the effects of other augmentation methods are minimal according to paper. The rest will be implemented later.

To achieve better result, I changed face dataset to more diverse one(CelebA).

merge_from_ofoct (2)

merge_from_ofoct (1)

image

ADA makes training longer. It took 8 days with single 2070 SUPER, but did not converged completely.

KID*1000
12.14

Start training

python main.py --dataset dataset_name --useADA True --group 0,1,2,3 --use_grouploss True --neptune False

If --neptune is True, the experiment is transmitted to neptune ai, which is experiment management tool. You must set your API token. --group 0,1,3 make group 2 out of training.

Owner
이상윤
이상윤
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022