A Fast Knowledge Distillation Framework for Visual Recognition

Overview

FKD: A Fast Knowledge Distillation Framework for Visual Recognition

Official PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition. Zhiqiang Shen and Eric Xing from CMU and MUZUAI.

Abstract

Knowledge Distillation (KD) has been recognized as a useful tool in many visual tasks, such as the supervised classification and self-supervised representation learning, while the main drawback of a vanilla KD framework lies in its mechanism that most of the computational overhead is consumed on forwarding through the giant teacher networks, which makes the whole learning procedure in a low-efficient and costly manner. In this work, we propose a Fast Knowledge Distillation (FKD) framework that simulates the distillation training phase and generates soft labels following the multi-crop KD procedure, meanwhile enjoying the faster training speed than ReLabel as we have no post-processes like RoI align and softmax operations. Our FKD is even more efficient than the conventional classification framework when employing multi-crop in the same image for data loading. We achieve 79.8% using ResNet-50 on ImageNet-1K, outperforming ReLabel by ~1.0% while being faster. We also demonstrate the efficiency advantage of FKD on the self-supervised learning task.

Supervised Training

Preparation

FKD Training on CNNs

To train a model, run train_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

python train_FKD.py -a resnet50 --lr 0.1 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For --softlabel_path, simply use format as ./FKD_soft_label_500_crops_marginal_smoothing_k_5

Multi-processing distributed training is supported, please refer to official PyTorch ImageNet training code for details.

Evaluation

python train_FKD.py -a resnet50 -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model accuracy (Top-1) weights configurations
ReLabel ResNet-50 78.9 -- --
FKD ResNet-50 79.8 link Table 10 in paper
ReLabel ResNet-101 80.7 -- --
FKD ResNet-101 81.7 link Table 10 in paper

FKD Training on ViT/DeiT and SReT

To train a ViT model, run train_ViT_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

cd train_ViT
python train_ViT_FKD.py -a SReT_LT --lr 0.002 --wd 0.05 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For the instructions of SReT_LT model, please refer to SReT for details.

Evaluation

python train_ViT_FKD.py -a SReT_LT -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model FLOPs #params accuracy (Top-1) weights configurations
DeiT-T-distill 1.3B 5.7M 74.5 -- --
FKD ViT/DeiT-T 1.3B 5.7M 75.2 link Table 11 in paper
SReT-LT-distill 1.2B 5.0M 77.7 -- --
FKD SReT-LT 1.2B 5.0M 78.7 link Table 11 in paper

Fast MEAL V2

Please see MEAL V2 for the instructions to run FKD with MEAL V2.

Self-supervised Representation Learning Using FKD

Please see FKD-SSL for the instructions to run FKD code for SSL task.

Citation

@article{shen2021afast,
      title={A Fast Knowledge Distillation Framework for Visual Recognition}, 
      author={Zhiqiang Shen and Eric Xing},
      year={2021},
      journal={arXiv preprint arXiv:2112.01528}
}

Contact

Zhiqiang Shen (zhiqians at andrew.cmu.edu or zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023