🎯 A comprehensive gradient-free optimization framework written in Python

Overview

Build Status MIT License

Solid is a Python framework for gradient-free optimization.

It contains basic versions of many of the most common optimization algorithms that do not require the calculation of gradients, and allows for very rapid development using them.

It's a very versatile library that's great for learning, modifying, and of course, using out-of-the-box.

See the detailed documentation here.


Current Features:


Usage:

  • pip install solidpy
  • Import the relevant algorithm
  • Create a class that inherits from that algorithm, and that implements the necessary abstract methods
  • Call its .run() method, which always returns the best solution and its objective function value

Example:

from random import choice, randint, random
from string import lowercase
from Solid.EvolutionaryAlgorithm import EvolutionaryAlgorithm


class Algorithm(EvolutionaryAlgorithm):
    """
    Tries to get a randomly-generated string to match string "clout"
    """
    def _initial_population(self):
        return list(''.join([choice(lowercase) for _ in range(5)]) for _ in range(50))

    def _fitness(self, member):
        return float(sum(member[i] == "clout"[i] for i in range(5)))

    def _crossover(self, parent1, parent2):
        partition = randint(0, len(self.population[0]) - 1)
        return parent1[0:partition] + parent2[partition:]

    def _mutate(self, member):
        if self.mutation_rate >= random():
            member = list(member)
            member[randint(0,4)] = choice(lowercase)
            member = ''.join(member)
        return member


def test_algorithm():
    algorithm = Algorithm(.5, .7, 500, max_fitness=None)
    best_solution, best_objective_value = algorithm.run()

Testing

To run tests, look in the tests folder.

Use pytest; it should automatically find the test files.


Contributing

Feel free to send a pull request if you want to add any features or if you find a bug.

Check the issues tab for some potential things to do.

Comments
  • Run flake8 in warning only mode on Python 2 and 3

    Run flake8 in warning only mode on Python 2 and 3

    This will help us find and fix the Python 3 syntax errors (print_function, etc.) A step towards the resolution of https://github.com/100/Solid/issues/6

    opened by cclauss 6
  • Simulated annealing: bug in run method

    Simulated annealing: bug in run method

    Description of the bug

    The run() method of the SimulatedAnnealing class has a bug when the annealing method does not find a better state than the initial one.

    When does it happens

    The bug happens when the annealing algorithm fails to find a better state than the initial one. This can happen when the maximum number of steps is low or when the initial guess is already very good.

    What is the current behaviour

    The tuple returned by the run() method is (None, cost_of_initial_state).

    How to fix

    Add the line

    self.best_state = deepcopy(self.current_state)
    

    between L142 and L143.

    opened by nelimee 0
  • Correction of EA and GA for nondeterministic fitness functions

    Correction of EA and GA for nondeterministic fitness functions

    Correction of an issue that occurs when the fitness function is nondeterministic (shuffled cross-validation for example). In the _select_n method, the total fitness is computed according to the stored fitnesses, but the probs variable is computed according to recalculated fitness values. This slight change makes the method use the stored fitnesses at each time, which solves the problem. This also makes the method run much faster (especially when the fitness function has a high complexity) by removing unnecessary calls to _fitness.

    opened by miraaitsaada 0
  • More Algorithms

    More Algorithms

    Of course, more algorithms are always great.

    Some suggestions:

    • Coordinate descent
    • Ant colony optimization
    • Differential evolution
    • Cuckoo search
    • Cross-entropy method
    enhancement help wanted 
    opened by 100 0
  • Numerical Stabilitity

    Numerical Stabilitity

    It would be good to find all of the instances where the algorithms may be unstable and handle these cases appropriately (such as overflow). Some cases are handled, but there are probably more.

    bug help wanted 
    opened by 100 0
  • Better Testing?

    Better Testing?

    Currently, the testing just makes sure that the algorithm runs without error on a toy problem.

    It would be nice to do something more akin to unit testing, but I'm not quite sure how to do it in this situation since a lot of the testable functionality is provided by the user.

    enhancement help wanted question 
    opened by 100 0
Releases(0.11)
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022