[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Overview

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks" by Hanxun Huang, Yisen Wang, Sarah Monazam Erfani, Quanquan Gu, James Bailey, Xingjun Ma


Robust Configurations for WideResNet (WRN-34-R)

def RobustWideResNet34(num_classes=10):
    # WRN-34-R configurations
    return RobustWideResNet(
        num_classes=num_classes, channel_configs=[16, 320, 640, 512],
        depth_configs=[5, 5, 5], stride_config=[1, 2, 2], stem_stride=1,
        drop_rate_config=[0.0, 0.0, 0.0], zero_init_residual=False,
        block_types=['basic_block', 'basic_block', 'basic_block'],
        activations=['ReLU', 'ReLU', 'ReLU'], is_imagenet=False,
        use_init=True)

Reproduce results from the paper

  • Pretrained Weights for WRN-34-R used in Table 2 available on Google Drive
  • All hyperparameters/settings for each model/method used in Table 2 are stored in configs/*.yaml files.

Evaluations of the robustness of WRN-34-R

WRN-34-R trained with TRADES

Replace PGD with other attacks ['CW', 'GAMA', 'AA'].

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades
               --load_best_model --attack PGD --data_parallel
WRN-34-R trained with TRADES and additional 500k data

Replace PGD with other attacks ['CW', 'GAMA', 'AA'].

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades-500k
               --load_best_model --attack PGD --data_parallel

Train WRN-34-R with 500k additional data from scratch

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades-500k
               --train --data_parallel

CIFAR-10 - Linf AutoAttack Leaderboard using additional 500k data

  • Note: This is not maintained, please find up-to-date leaderboard is available in RobustBench.
# paper model architecture clean report. AA
1 (Gowal et al., 2020) available WRN-70-16 91.10 65.87 65.88
2 Ours‡ + EMA available WRN-34-R 91.23 62.54 62.54
3 Ours available WRN-34-R 90.56 61.56 61.56
4 (Wu et al., 2020a) available WRN-34-15 87.67 60.65 60.65
5 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
6 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
7 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
8 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29

Citation

@inproceedings{huang2021exploring,
    title={Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks},
    author={Hanxun Huang and Yisen Wang and Sarah Monazam Erfani and Quanquan Gu and James Bailey and Xingjun Ma},
    booktitle={NeurIPS},
    year={2021}
}

Part of the code is based on the following repo:

Owner
Hanxun Huang
Hanxun Huang
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023