Clockwork Convnets for Video Semantic Segmentation

Overview

Clockwork Convnets for Video Semantic Segmentation

This is the reference implementation of arxiv:1608.03609:

Clockwork Convnets for Video Semantic Segmentation
Evan Shelhamer*, Kate Rakelly*, Judy Hoffman*, Trevor Darrell
arXiv:1605.06211

This project reproduces results from the arxiv and demonstrates how to execute staged fully convolutional networks (FCNs) on video in Caffe by controlling the net through the Python interface. In this way this these experiments are a proof-of-concept implementation of clockwork, and further development is needed to achieve peak efficiency (such as pre-fetching video data layers, threshold GPU layers, and a native Caffe library edition of the staged forward pass for pipelining).

For simple reference, refer to these (display only) editions of the experiments:

Contents

  • notebooks: interactive code and documentation that carries out the experiments (in jupyter/ipython format).
  • nets: the net specification of the various FCNs in this work, and the pre-trained weights (see installation instructions).
  • caffe: the Caffe framework, included as a git submodule pointing to a compatible version
  • datasets: input-output for PASCAL VOC, NYUDv2, YouTube-Objects, and Cityscapes
  • lib: helpers for executing networks, scoring metrics, and plotting

License

This project is licensed for open non-commercial distribution under the UC Regents license; see LICENSE. Its dependencies, such as Caffe, are subject to their own respective licenses.

Requirements & Installation

Caffe, Python, and Jupyter are necessary for all of the experiments. Any installation or general Caffe inquiries should be directed to the caffe-users mailing list.

  1. Install Caffe. See the installation guide and try Caffe through Docker (recommended). Make sure to configure pycaffe, the Caffe Python interface, too.
  2. Install Python, and then install our required packages listed in requirements.txt. For instance, for x in $(cat requirements.txt); do pip install $x; done should do.
  3. Install Jupyter, the interface for viewing, executing, and altering the notebooks.
  4. Configure your PYTHONPATH as indicated by the included .envrc so that this project dir and pycaffe are included.
  5. Download the model weights for this project and place them in nets.

Now you can explore the notebooks by firing up Jupyter.

Owner
Evan Shelhamer
Evan Shelhamer
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet δΈ­ζ–‡η‰ˆ Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight πŸ“˜ Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023