A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

Related tags

Deep LearningCFN-SR
Overview

CFN-SR

A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

The audio-video based multimodal emotion recognition has attracted a lot of attention due to its robust performance. Most of the existing methods focus on proposing different cross-modal fusion strategies. However, these strategies introduce redundancy in the features of different modalities without fully considering the complementary properties between modal information, and these approaches do not guarantee the non-loss of original semantic information during intra- and inter-modal interactions. In this paper, we propose a novel cross-modal fusion network based on self-attention and residual structure (CFN-SR) for multimodal emotion recognition. Firstly, we perform representation learning for audio and video modalities to obtain the semantic features of the two modalities by efficient ResNeXt and 1D CNN, respectively. Secondly, we feed the features of the two modalities into the cross-modal blocks separately to ensure efficient complementarity and completeness of information through the self-attention mechanism and residual structure. Finally, we obtain the output of emotions by splicing the obtained fused representation with the original representation. To verify the effectiveness of the proposed method, we conduct experiments on the RAVDESS dataset. The experimental results show that the proposed CFN-SR achieves the state-of-the-art and obtains 75.76% accuracy with 26.30M parameters.

image-20211007154526694

Setup

Install dependencies

pip install opencv-python moviepy librosa sklearn

Download the RAVDESS dataset using the bash script

bash scripts/download_ravdess.sh <path/to/RAVDESS>

Or download the files manually

and follow the folder structure below and have .csv files in landmarks/ (do not modify file names)

RAVDESS/
    landmarks/
        .csv landmark files
    Actor_01/
    ...
    Actor_24/

Preprocess the dataset using the following

python dataset_prep.py --datadir <path/to/RAVDESS>

Generated folder structure (do not modify file names)

RAVDESS/
    landmarks/
        .csv landmark files
    Actor_01/
    ...
    Actor_24/
    preprocessed/
        Actor_01/
        ...
        Actor_24/
            01-01-01-01-01-01-24.mp4/
                frames/
                    .jpg frames
                audios/
                    .wav raw audio
                    .npy MFCC features
            ...

Download checkpoints folder from Google Drive. The following script downloads all pretrained models (unimodal and MSAF) for all 6 folds.

bash scripts/download_checkpoints.sh

Train

python main_msaf.py --datadir <path/to/RAVDESS/preprocessed> --checkpointdir checkpoints --train

All parameters

usage: main_msaf.py [-h] [--datadir DATADIR] [--k_fold K_FOLD] [--lr LR]
                    [--batch_size BATCH_SIZE] [--num_workers NUM_WORKERS]
                    [--epochs EPOCHS] [--checkpointdir CHECKPOINTDIR] [--no_verbose]
                    [--log_interval LOG_INTERVAL] [--no_save] [--train]

Result

Model Fusion Stage Accuracy #Params
Averaging Late 68.82 25.92M
Multiplicative Late 70.35 25.92M
Multiplication Late 70.56 25.92M
Concat + FC Early 71.04 26.87M
MCBP Early 71.32 51.03M
MMTM Model 73.12 31.97M
MSAF Model 74.86 25.94M
ERANNs Model 74.80
CFN-SR(Ours) Model 75.76 26.30M

Reference

  • Note that some codes references MSAF
Owner
skeleton
skeleton
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023