NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

Overview

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Python Package Docs

Paper: https://arxiv.org/abs/2102.06171.pdf

Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Do star this repository if it helps your work!

Note: See this comment for a generic implementation for any optimizer as a temporary reference for anyone who needs it.

Installation

Install from PyPi:

pip3 install nfnets-pytorch

or install the latest code using:

pip3 install git+https://github.com/vballoli/nfnets-pytorch

Usage

WSConv2d

Use WSConv2d and WSConvTranspose2d like any other torch.nn.Conv2d or torch.nn.ConvTranspose2d modules.

import torch
from torch import nn
from nfnets import WSConv2d

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

conv_t = nn.ConvTranspose2d(3,6,3)
w_conv_t = WSConvTranspose2d(3,6,3)

SGD - Adaptive Gradient Clipping

Similarly, use SGD_AGC like torch.optim.SGD

import torch
from torch import nn, optim
from nfnets import WSConv2d, SGD_AGC

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = SGD_AGC(conv.parameters(), 1e-3)

Generic AGC

import torch
from torch import nn, optim
from nfnets import WSConv2d
from nfnets.agc import AGC # Needs testing

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = AGC(conv.parameters(), optim) # Needs testing

Using it within any PyTorch model

import torch
from torch import nn
from torchvision.models import resnet18

from nfnets import replace_conv

model = resnet18()
replace_conv(model)

Docs

Find the docs at readthedocs

TODO

  • WSConv2d
  • SGD - Adaptive Gradient Clipping
  • Function to automatically replace Convolutions in any module with WSConv2d
  • Documentation
  • Generic AGC wrapper.(See this comment for a reference implementation) (Needs testing for now)
  • WSConvTranspose2d
  • NFNets
  • NF-ResNets

Cite Original Work

To cite the original paper, use:

@article{brock2021high,
  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},
  year={2021}
}
Comments
  • optim_agc.step() this instruction is raising  AttributeError: 'NoneType' object has no attribute 'ndim'

    optim_agc.step() this instruction is raising AttributeError: 'NoneType' object has no attribute 'ndim'

    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    import numpy as np
    import torchvision
    from torchvision import *
    from torch.utils.data import Dataset, DataLoader
    from nfnets import replace_conv,SGD_AGC
    
    net = models.resnet50(pretrained=True)
    replace_conv(net)
    net = net.cuda() if device else net
    num_ftrs = net.fc.in_features
    net.fc = nn.Linear(num_ftrs, 13)
    net.fc = net.fc.cuda() if use_cuda else net.fc
    ct = 0
    for name, child in net.named_children():
        ct += 1
        if ct < 8:
            for name2, params in child.named_parameters():
                params.requires_grad = False
    
    criterion = nn.CrossEntropyLoss()
    optim_agc = SGD_AGC(net.parameters(), 1e-3,momentum=0.9)
    
    n_epochs = 5
    print_every = 10
    valid_loss_min = np.Inf
    val_loss = []
    val_acc = []
    train_loss = []
    train_acc = []
    total_step = len(train_dataloader)
    
    for epoch in range(1, n_epochs+1):
        running_loss = 0.0
        correct = 0
        total=0
        print(f'Epoch {epoch}\n')
        for batch_idx, (data_, target_) in enumerate(train_dataloader):
            data_, target_ = data_.to(device), target_.to(device)
            optim_agc.zero_grad()
            outputs = net(data_)
            loss = criterion(outputs, target_)
            loss.backward()
            optim_agc.step()
            running_loss += loss.item()
            _,pred = torch.max(outputs, dim=1)
            correct += torch.sum(pred==target_).item()
            total += target_.size(0)
            if (batch_idx) % 20 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch, n_epochs, batch_idx, total_step, loss.item()))
        train_acc.append(100 * correct / total)
        train_loss.append(running_loss/total_step)
    		
    

    Traceback (most recent call last):

    File "image_product_classifier.py", line 74, in optim_agc.step() File "/home/sachin_mohan/venv/lib/python3.6/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context return func(*args, **kwargs) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/sgd_agc.py", line 105, in step grad_norm = unitwise_norm(p.grad) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/utils.py", line 27, in unitwise_norm if x.ndim <= 1: AttributeError: 'NoneType' object has no attribute 'ndim'``

    bug Fixed 
    opened by sachin22225 13
  • Is it pytorch compatibility??

    Is it pytorch compatibility??

    I use the code, however, I got the following error.

    At first, I got the following;

    base.py", line 262, in __init__
        dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode)
    TypeError: __init__() got an unexpected keyword argument 'padding_mode'
    

    When I remove padding_mode=padding_mode, I got another error, as presented below

    utils.py", line 23, in replace_conv
        setattr(module, name, torch.nn.Identity())
    AttributeError: module 'torch.nn' has no attribute 'Identity'
    

    How to solve this?

    question 
    opened by Choneke 11
  • Example in readme does not work

    Example in readme does not work

    Describe the bug Running either replace_conv this code form the readme on the front page: model = vgg16() replace_conv(model, WSConv2d) # This repo's original implementation replace_conv(model, ScaledStdConv2d) # From timm

    Results in this error:

      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 25, in replace_conv
        replace_conv(mod, conv_class)
      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 18, in replace_conv
        setattr(module, name, conv_class(target_mod.in_channels, target_mod.out_channels, target_mod.kernel_size,
      File "/opt/conda/lib/python3.8/site-packages/nfnets/base.py", line 262, in __init__
        super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 386, in __init__
        super(Conv2d, self).__init__(
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 108, in __init__
        if bias:
    RuntimeError: Boolean value of Tensor with more than one value is ambiguous
    
    enhancement WIP will be delayed 
    opened by RandomString123 4
  • Implement `param_groups` for AGC

    Implement `param_groups` for AGC

    Describe the bug Using LambdaLR, it will call len(optimizer.param_groups), but this is not implemented for AGC.

    To Reproduce

    model = torch.nn.Conv1d(10,20,4)
    optimizer = optim.AdamW(model.parameters())
    optimizer_agc = AGC(model.parameters(),optimizer)
    
    lambda1 = lambda iteration: 0.05*iteration
    scheduler_warmup = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1)
    scheduler_warmup_agc = torch.optim.lr_scheduler.LambdaLR(optimizer_agc,lr_lambda=lambda1)
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-58-f68dd026a6de> in <module>
    ----> 1 scheduler_warmup2 = torch.optim.lr_scheduler.LambdaLR(optimizer2,lr_lambda=lambda1)
    
    /gpfs/alpine/proj-shared/fus131/conda-envs/torch1.5.0v2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py in __init__(self, optimizer, lr_lambda, last_epoch)
        180
        181         if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
    --> 182             self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
        183         else:
        184             if len(lr_lambda) != len(optimizer.param_groups):
    
    AttributeError: 'AGC' object has no attribute 'param_groups'
    

    Pytorch v1.5.0

    bug 
    opened by rmchurch 4
  • torch.max doesn't check for tensors being on different devices.

    torch.max doesn't check for tensors being on different devices.

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce Steps to reproduce the behavior:

    1. Go to example and instantiate a resnet18
    2. Send model to torch.device('cuda)
    3. Define a tensor on the gpu
    4. Call model.forward()
    5. RuntimeError: iter.device(arg).is_cuda() INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/cuda/Loops.cuh":94, please report a bug to PyTorch.

    Expected behavior Regular output

    Screenshots If applicable, add screenshots to help explain your problem.

    See here

    My Solution:

    Its hacky obviously but it works. Simply replace https://github.com/vballoli/nfnets-pytorch/blob/867860eebffcc70fb87a389d770cfd4a73c6b30c/nfnets/base.py#L22 with scale = torch.rsqrt(torch.max(var * fan_in, torch.tensor(eps).to(var.device))) * self.gain.view_as(var).to(var.device)

    Fixed 
    opened by bfialkoff 4
  • AGC without modifying the optimizer

    AGC without modifying the optimizer

    Hello,

    Is there a way to apply AGC externally without modifying the optimizer code?

    I am using optimizers from torch_optimizer package and that would be good.

    Fixed 
    opened by kayuksel 4
  • Add WSConv1d

    Add WSConv1d

    I just did a minor modification on WSConv2d to implement a WS version Conv1d. It works fine with my own model which is a time series model using Transformer + Conv1d, and it removes the overfitting issue in my model. Thanks

    opened by shi27feng 3
  • Model is None

    Model is None

    Hi @vballoli, It seems to have a bug in the code of AGC:

    if model is not None:
        assert ignore_agc not in [None, []], "You must specify ignore_agc for AGC to ignore fc-like(or other) layers"
        names = [name for name, module in model.named_modules()]
    
        for module_name in ignore_agc:
            if module_name not in names:
                raise ModuleNotFoundError("Module name {} not found in the model".format(module_name))
            params = [{"params": list(module.parameters())} for name,
                              module in model.named_modules() if name not in ignore_agc]
    else:
        params = [{"params": list(module.parameters())} for name,
                           module in model.named_modules()]
    

    When model is None then the else part of the code cannot get name and module from model.named_modules().

    Thanks

    bug 
    opened by shi27feng 2
  • AGC condition

    AGC condition

    Hello! What's the reason you changed the AGC condition from trigger = grad_norm > max_norm as in original paper and code?

    https://github.com/vballoli/nfnets-pytorch/blob/1513cea2c39e09189f4883ad90c2337a8fb9f9ed/nfnets/agc.py#L71

    commit: 4b03658f16d5746d45ea27711f5b33551a472e00

    opened by haigh1510 2
  • Conv layer from timm work better

    Conv layer from timm work better

    resnet18 with replace this layer learn better, but still need two times more epochs for same result than original on CIFAR10

    class ScaledStdConv2d(nn.Conv2d):
        """Conv2d layer with Scaled Weight Standardization.
        Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` -
            https://arxiv.org/abs/2101.08692
        """
    
        def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
                     bias=True, gain=True, gamma=1.0, eps=1e-5, use_layernorm=False):
            if padding is None:
                padding = get_padding(kernel_size, stride, dilation)
            super().__init__(
                in_channels, out_channels, kernel_size, stride=stride,
                padding=padding, dilation=dilation, groups=groups, bias=bias)
            self.gain = nn.Parameter(torch.ones(self.out_channels, 1, 1, 1)) if gain else None
            self.scale = gamma * self.weight[0].numel() ** -0.5  # gamma * 1 / sqrt(fan-in)
            self.eps = eps ** 2 if use_layernorm else eps
            self.use_layernorm = use_layernorm  # experimental, slightly faster/less GPU memory use
    
        def get_weight(self):
            if self.use_layernorm:
                weight = self.scale * F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
            else:
                std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
                weight = self.scale * (self.weight - mean) / (std + self.eps)
            if self.gain is not None:
                weight = weight * self.gain
            return weight
    
        def forward(self, x):
            return F.conv2d(x, self.get_weight(), self.bias, self.stride, self.padding, self.dilation, self.groups)
    
    enhancement help wanted Discussion 
    opened by attashe 2
  • Adaptive gradient clipping shouldn't be used in the final classifier layer

    Adaptive gradient clipping shouldn't be used in the final classifier layer

    Describe the bug In the paper it is mentioned that AGC is NOT used in the final layer. image

    Expected behavior It will be great AGC can be disabled for final layer. Adding a check here may be sufficient to get the desired behavior. Please let me know if i am misunderstanding something. Thanks.

    opened by sidml 2
Releases(0.1.3)
  • 0.0.6(Feb 17, 2021)

  • 0.0.4(Feb 15, 2021)

  • 0.0.3(Feb 15, 2021)

  • 0.0.2(Feb 15, 2021)

  • 0.0.1(Feb 14, 2021)

    PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

    Paper: https://arxiv.org/abs/2102.06171.pdf Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

    Installation

    pip3 install git+https://github.com/vballoli/nfnets-pytorch

    Usage

    WSConv2d

    Use WSConv2d like any other torch.nn.Conv2d.

    import torch
    from torch import nn
    from nfnets import WSConv2d
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    

    SGD - Adaptive Gradient Clipping

    Similarly, use SGD_AGC like torch.optim.SGD

    import torch
    from torch import nn, optim
    from nfnets import WSConv2d, SGD_AGC
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    
    optim = optim.SGD(conv.parameters(), 1e-3)
    optim_agc = SGD_AGC(conv.parameters(), 1e-3)
    

    Using it within any PyTorch model

    import torch
    from torch import nn
    from torchvision.models import resnet18
    
    from nfnets import replace_conv
    
    model = resnet18()
    replace_conv(model)
    

    Docs

    Find the docs at readthedocs

    TODO

    • [x] WSConv2d
    • [x] SGD - Adaptive Gradient Clipping
    • [x] Function to automatically replace Convolutions in any module with WSConv2d
    • [x] Documentation
    • [ ] NFNets
    • [ ] NF-ResNets

    Cite Original Work

    To cite the original paper, use:

    @article{brock2021high,
      author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
      title={High-Performance Large-Scale Image Recognition Without Normalization},
      journal={arXiv preprint arXiv:},
      year={2021}
    }
    
    Source code(tar.gz)
    Source code(zip)
Owner
Vaibhav Balloli
ML, RL, Hardware Systems.
Vaibhav Balloli
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022