NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

Overview

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Python Package Docs

Paper: https://arxiv.org/abs/2102.06171.pdf

Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Do star this repository if it helps your work!

Note: See this comment for a generic implementation for any optimizer as a temporary reference for anyone who needs it.

Installation

Install from PyPi:

pip3 install nfnets-pytorch

or install the latest code using:

pip3 install git+https://github.com/vballoli/nfnets-pytorch

Usage

WSConv2d

Use WSConv2d and WSConvTranspose2d like any other torch.nn.Conv2d or torch.nn.ConvTranspose2d modules.

import torch
from torch import nn
from nfnets import WSConv2d

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

conv_t = nn.ConvTranspose2d(3,6,3)
w_conv_t = WSConvTranspose2d(3,6,3)

SGD - Adaptive Gradient Clipping

Similarly, use SGD_AGC like torch.optim.SGD

import torch
from torch import nn, optim
from nfnets import WSConv2d, SGD_AGC

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = SGD_AGC(conv.parameters(), 1e-3)

Generic AGC

import torch
from torch import nn, optim
from nfnets import WSConv2d
from nfnets.agc import AGC # Needs testing

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = AGC(conv.parameters(), optim) # Needs testing

Using it within any PyTorch model

import torch
from torch import nn
from torchvision.models import resnet18

from nfnets import replace_conv

model = resnet18()
replace_conv(model)

Docs

Find the docs at readthedocs

TODO

  • WSConv2d
  • SGD - Adaptive Gradient Clipping
  • Function to automatically replace Convolutions in any module with WSConv2d
  • Documentation
  • Generic AGC wrapper.(See this comment for a reference implementation) (Needs testing for now)
  • WSConvTranspose2d
  • NFNets
  • NF-ResNets

Cite Original Work

To cite the original paper, use:

@article{brock2021high,
  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},
  year={2021}
}
Comments
  • optim_agc.step() this instruction is raising  AttributeError: 'NoneType' object has no attribute 'ndim'

    optim_agc.step() this instruction is raising AttributeError: 'NoneType' object has no attribute 'ndim'

    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    import numpy as np
    import torchvision
    from torchvision import *
    from torch.utils.data import Dataset, DataLoader
    from nfnets import replace_conv,SGD_AGC
    
    net = models.resnet50(pretrained=True)
    replace_conv(net)
    net = net.cuda() if device else net
    num_ftrs = net.fc.in_features
    net.fc = nn.Linear(num_ftrs, 13)
    net.fc = net.fc.cuda() if use_cuda else net.fc
    ct = 0
    for name, child in net.named_children():
        ct += 1
        if ct < 8:
            for name2, params in child.named_parameters():
                params.requires_grad = False
    
    criterion = nn.CrossEntropyLoss()
    optim_agc = SGD_AGC(net.parameters(), 1e-3,momentum=0.9)
    
    n_epochs = 5
    print_every = 10
    valid_loss_min = np.Inf
    val_loss = []
    val_acc = []
    train_loss = []
    train_acc = []
    total_step = len(train_dataloader)
    
    for epoch in range(1, n_epochs+1):
        running_loss = 0.0
        correct = 0
        total=0
        print(f'Epoch {epoch}\n')
        for batch_idx, (data_, target_) in enumerate(train_dataloader):
            data_, target_ = data_.to(device), target_.to(device)
            optim_agc.zero_grad()
            outputs = net(data_)
            loss = criterion(outputs, target_)
            loss.backward()
            optim_agc.step()
            running_loss += loss.item()
            _,pred = torch.max(outputs, dim=1)
            correct += torch.sum(pred==target_).item()
            total += target_.size(0)
            if (batch_idx) % 20 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                       .format(epoch, n_epochs, batch_idx, total_step, loss.item()))
        train_acc.append(100 * correct / total)
        train_loss.append(running_loss/total_step)
    		
    

    Traceback (most recent call last):

    File "image_product_classifier.py", line 74, in optim_agc.step() File "/home/sachin_mohan/venv/lib/python3.6/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context return func(*args, **kwargs) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/sgd_agc.py", line 105, in step grad_norm = unitwise_norm(p.grad) File "/home/sachin_mohan/venv/lib/python3.6/site-packages/nfnets/utils.py", line 27, in unitwise_norm if x.ndim <= 1: AttributeError: 'NoneType' object has no attribute 'ndim'``

    bug Fixed 
    opened by sachin22225 13
  • Is it pytorch compatibility??

    Is it pytorch compatibility??

    I use the code, however, I got the following error.

    At first, I got the following;

    base.py", line 262, in __init__
        dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode)
    TypeError: __init__() got an unexpected keyword argument 'padding_mode'
    

    When I remove padding_mode=padding_mode, I got another error, as presented below

    utils.py", line 23, in replace_conv
        setattr(module, name, torch.nn.Identity())
    AttributeError: module 'torch.nn' has no attribute 'Identity'
    

    How to solve this?

    question 
    opened by Choneke 11
  • Example in readme does not work

    Example in readme does not work

    Describe the bug Running either replace_conv this code form the readme on the front page: model = vgg16() replace_conv(model, WSConv2d) # This repo's original implementation replace_conv(model, ScaledStdConv2d) # From timm

    Results in this error:

      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 25, in replace_conv
        replace_conv(mod, conv_class)
      File "/opt/conda/lib/python3.8/site-packages/nfnets/utils.py", line 18, in replace_conv
        setattr(module, name, conv_class(target_mod.in_channels, target_mod.out_channels, target_mod.kernel_size,
      File "/opt/conda/lib/python3.8/site-packages/nfnets/base.py", line 262, in __init__
        super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 386, in __init__
        super(Conv2d, self).__init__(
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 108, in __init__
        if bias:
    RuntimeError: Boolean value of Tensor with more than one value is ambiguous
    
    enhancement WIP will be delayed 
    opened by RandomString123 4
  • Implement `param_groups` for AGC

    Implement `param_groups` for AGC

    Describe the bug Using LambdaLR, it will call len(optimizer.param_groups), but this is not implemented for AGC.

    To Reproduce

    model = torch.nn.Conv1d(10,20,4)
    optimizer = optim.AdamW(model.parameters())
    optimizer_agc = AGC(model.parameters(),optimizer)
    
    lambda1 = lambda iteration: 0.05*iteration
    scheduler_warmup = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1)
    scheduler_warmup_agc = torch.optim.lr_scheduler.LambdaLR(optimizer_agc,lr_lambda=lambda1)
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-58-f68dd026a6de> in <module>
    ----> 1 scheduler_warmup2 = torch.optim.lr_scheduler.LambdaLR(optimizer2,lr_lambda=lambda1)
    
    /gpfs/alpine/proj-shared/fus131/conda-envs/torch1.5.0v2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py in __init__(self, optimizer, lr_lambda, last_epoch)
        180
        181         if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
    --> 182             self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
        183         else:
        184             if len(lr_lambda) != len(optimizer.param_groups):
    
    AttributeError: 'AGC' object has no attribute 'param_groups'
    

    Pytorch v1.5.0

    bug 
    opened by rmchurch 4
  • torch.max doesn't check for tensors being on different devices.

    torch.max doesn't check for tensors being on different devices.

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce Steps to reproduce the behavior:

    1. Go to example and instantiate a resnet18
    2. Send model to torch.device('cuda)
    3. Define a tensor on the gpu
    4. Call model.forward()
    5. RuntimeError: iter.device(arg).is_cuda() INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/cuda/Loops.cuh":94, please report a bug to PyTorch.

    Expected behavior Regular output

    Screenshots If applicable, add screenshots to help explain your problem.

    See here

    My Solution:

    Its hacky obviously but it works. Simply replace https://github.com/vballoli/nfnets-pytorch/blob/867860eebffcc70fb87a389d770cfd4a73c6b30c/nfnets/base.py#L22 with scale = torch.rsqrt(torch.max(var * fan_in, torch.tensor(eps).to(var.device))) * self.gain.view_as(var).to(var.device)

    Fixed 
    opened by bfialkoff 4
  • AGC without modifying the optimizer

    AGC without modifying the optimizer

    Hello,

    Is there a way to apply AGC externally without modifying the optimizer code?

    I am using optimizers from torch_optimizer package and that would be good.

    Fixed 
    opened by kayuksel 4
  • Add WSConv1d

    Add WSConv1d

    I just did a minor modification on WSConv2d to implement a WS version Conv1d. It works fine with my own model which is a time series model using Transformer + Conv1d, and it removes the overfitting issue in my model. Thanks

    opened by shi27feng 3
  • Model is None

    Model is None

    Hi @vballoli, It seems to have a bug in the code of AGC:

    if model is not None:
        assert ignore_agc not in [None, []], "You must specify ignore_agc for AGC to ignore fc-like(or other) layers"
        names = [name for name, module in model.named_modules()]
    
        for module_name in ignore_agc:
            if module_name not in names:
                raise ModuleNotFoundError("Module name {} not found in the model".format(module_name))
            params = [{"params": list(module.parameters())} for name,
                              module in model.named_modules() if name not in ignore_agc]
    else:
        params = [{"params": list(module.parameters())} for name,
                           module in model.named_modules()]
    

    When model is None then the else part of the code cannot get name and module from model.named_modules().

    Thanks

    bug 
    opened by shi27feng 2
  • AGC condition

    AGC condition

    Hello! What's the reason you changed the AGC condition from trigger = grad_norm > max_norm as in original paper and code?

    https://github.com/vballoli/nfnets-pytorch/blob/1513cea2c39e09189f4883ad90c2337a8fb9f9ed/nfnets/agc.py#L71

    commit: 4b03658f16d5746d45ea27711f5b33551a472e00

    opened by haigh1510 2
  • Conv layer from timm work better

    Conv layer from timm work better

    resnet18 with replace this layer learn better, but still need two times more epochs for same result than original on CIFAR10

    class ScaledStdConv2d(nn.Conv2d):
        """Conv2d layer with Scaled Weight Standardization.
        Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` -
            https://arxiv.org/abs/2101.08692
        """
    
        def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
                     bias=True, gain=True, gamma=1.0, eps=1e-5, use_layernorm=False):
            if padding is None:
                padding = get_padding(kernel_size, stride, dilation)
            super().__init__(
                in_channels, out_channels, kernel_size, stride=stride,
                padding=padding, dilation=dilation, groups=groups, bias=bias)
            self.gain = nn.Parameter(torch.ones(self.out_channels, 1, 1, 1)) if gain else None
            self.scale = gamma * self.weight[0].numel() ** -0.5  # gamma * 1 / sqrt(fan-in)
            self.eps = eps ** 2 if use_layernorm else eps
            self.use_layernorm = use_layernorm  # experimental, slightly faster/less GPU memory use
    
        def get_weight(self):
            if self.use_layernorm:
                weight = self.scale * F.layer_norm(self.weight, self.weight.shape[1:], eps=self.eps)
            else:
                std, mean = torch.std_mean(self.weight, dim=[1, 2, 3], keepdim=True, unbiased=False)
                weight = self.scale * (self.weight - mean) / (std + self.eps)
            if self.gain is not None:
                weight = weight * self.gain
            return weight
    
        def forward(self, x):
            return F.conv2d(x, self.get_weight(), self.bias, self.stride, self.padding, self.dilation, self.groups)
    
    enhancement help wanted Discussion 
    opened by attashe 2
  • Adaptive gradient clipping shouldn't be used in the final classifier layer

    Adaptive gradient clipping shouldn't be used in the final classifier layer

    Describe the bug In the paper it is mentioned that AGC is NOT used in the final layer. image

    Expected behavior It will be great AGC can be disabled for final layer. Adding a check here may be sufficient to get the desired behavior. Please let me know if i am misunderstanding something. Thanks.

    opened by sidml 2
Releases(0.1.3)
  • 0.0.6(Feb 17, 2021)

  • 0.0.4(Feb 15, 2021)

  • 0.0.3(Feb 15, 2021)

  • 0.0.2(Feb 15, 2021)

  • 0.0.1(Feb 14, 2021)

    PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

    Paper: https://arxiv.org/abs/2102.06171.pdf Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

    Installation

    pip3 install git+https://github.com/vballoli/nfnets-pytorch

    Usage

    WSConv2d

    Use WSConv2d like any other torch.nn.Conv2d.

    import torch
    from torch import nn
    from nfnets import WSConv2d
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    

    SGD - Adaptive Gradient Clipping

    Similarly, use SGD_AGC like torch.optim.SGD

    import torch
    from torch import nn, optim
    from nfnets import WSConv2d, SGD_AGC
    
    conv = nn.Conv2d(3,6,3)
    w_conv = WSConv2d(3,6,3)
    
    optim = optim.SGD(conv.parameters(), 1e-3)
    optim_agc = SGD_AGC(conv.parameters(), 1e-3)
    

    Using it within any PyTorch model

    import torch
    from torch import nn
    from torchvision.models import resnet18
    
    from nfnets import replace_conv
    
    model = resnet18()
    replace_conv(model)
    

    Docs

    Find the docs at readthedocs

    TODO

    • [x] WSConv2d
    • [x] SGD - Adaptive Gradient Clipping
    • [x] Function to automatically replace Convolutions in any module with WSConv2d
    • [x] Documentation
    • [ ] NFNets
    • [ ] NF-ResNets

    Cite Original Work

    To cite the original paper, use:

    @article{brock2021high,
      author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
      title={High-Performance Large-Scale Image Recognition Without Normalization},
      journal={arXiv preprint arXiv:},
      year={2021}
    }
    
    Source code(tar.gz)
    Source code(zip)
Owner
Vaibhav Balloli
ML, RL, Hardware Systems.
Vaibhav Balloli
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021