PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Overview

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Warning: the master branch might collapse. To obtain similar result in README, you can fall back to this commit, but remembered that some ops were not correctly implemented under that commit. Besides, you'd better use a lower learning rate, 1e-4 would be fine.

How to create CelebA-HQ dataset

I borrowed h5tool.py from official code. To create CelebA-HQ dataset, we have to download the original CelebA dataset, and the additional deltas files from here. After that, run

python2 h5tool.py create_celeba_hq file_name_to_save /path/to/celeba_dataset/ /path/to/celeba_hq_deltas

This is what I used on my laptop

python2 h5tool.py create_celeba_hq /Users/yuan/Downloads/CelebA-HQ /Users/yuan/Downloads/CelebA/Original\ CelebA/ /Users/yuan/Downloads/CelebA/CelebA-HQ-Deltas

I found that MD5 checking were always failed, so I just commented out the MD5 checking part(LN 568 and LN 589)

With default setting, it took 1 day on my server. You can specific num_threads and num_tasks for accleration.

Training from scratch

You have to create CelebA-HQ dataset first, please follow the instructions above.

To obtain the similar results in samples directory, see train_no_tanh.py or train.py scipt for details(with default options). Both should work well. For example, you could run

conda create -n pytorch_p36 python=3.6 h5py matplotlib
source activate pytorch_p36
conda install pytorch torchvision -c pytorch
conda install scipy
pip install tensorflow

#0=first gpu, 1=2nd gpu ,2=3rd gpu etc...
python train.py --gpu 0,1,2 --train_kimg 600 --transition_kimg 600 --beta1 0 --beta2 0.99 --gan lsgan --first_resol 4 --target_resol 256 --no_tanh

train_kimg(transition_kimg) means after seeing train_kimg * 1000(transition_kimg * 1000) real images, switching to fade in(stabilize) phase. Currently only support LSGAN and GAN with --no_noise option, since WGAN-GP is unavailable, --drift option does not affect the result. --no_tanh means do not use tanh at generator's output layer.

If you are Python 2 user, You'd better add this to the top of train.py since I use print('something...', file=f) to write experiment settings to file.

from __future__ import print_function

Tensorboard

tensorboard --logdir='./logs'

Update history

  • Update(20171213): Update data.py, now when fading in, real images are weighted combination of current resolution images and 0.5x resolution images. This weighting trick is similar to the one used in Generator's outputs or Discriminator's inputs. This helps stabilize when fading in.

  • Update(20171129): Add restoration mode. Basides, after many trying, I failed to combine BEGAN and PG-GAN. It's removed from the repository.

  • Update(20171124): Now training with CelebA-HQ dataset. Besides, still failing to introduce progressive growing to BEGAN, even with many modifications.

  • Update(20171121): Introduced progressive growing to BEGAN, see train_began.py script. However, experiments showed that it did not work at this moment. Finding bugs and tuning network structure...

  • Update(20171119): Unstable came from resize_activation function, after replacing repeat by torch.nn.functional.upsample, problem solved. And now I believe that both train.py and train_no_tanh should be stable. Restored from 128x128 stabilize, and continued training, currently at 256x256, phase = fade in, temporary results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171118): Making mistake in resize activation function(repeat is not a right in this function), though it's wrong, it's still effective when resolution<256, but collapsed at resolution>=256. Changing it now, scripts will be updated tomorrow. Sorry for this mistake.

  • Update(20171117): 128x128 fade in results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171116): Adding noise only to RGB images might still collapse. Switching to the same trick as the paper suggested. Besides, the paper used linear as activation of G's output layer, which is reasonable, as I observed in the experiments. Temporary results: 64x64, phase=fade in, the left 4 columns are Generated, and the right 4 columns are from real samples(when fading in, instability might occur, for example, the following results is not so promising, however, as the training goes, it gets better), higher resolution will be available soon.

  • Update(20171115): Mode collapse happened when fading in, debugging... => It turns out that unstable seems to be normal when fading in, after some more iterations, it gets better. Now I'm not using the same noise adding trick as the paper suggested, however, it had been implemented, I will test it and plug it into the network.

  • Update(20171114): First version, seems that the generator tends to generate white image. Debugging now. => Fixed some bugs. Now seems normal, training... => There are some unknown problems when fading in, debugging...

  • Update(20171113): Generator and Discriminator: ok, simple test passed.

  • Update(20171112): It's now under reimplementation.

  • Update(20171111): It's still under implementation. I did not care design the structure, and now I had to reimplement(phase='fade in' is hard to implement under current structure). I also fixed some bugs, since reimplementation is needed, I do not plan to pull requests at this moment.

Reference implementation

Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022