PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Overview

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Warning: the master branch might collapse. To obtain similar result in README, you can fall back to this commit, but remembered that some ops were not correctly implemented under that commit. Besides, you'd better use a lower learning rate, 1e-4 would be fine.

How to create CelebA-HQ dataset

I borrowed h5tool.py from official code. To create CelebA-HQ dataset, we have to download the original CelebA dataset, and the additional deltas files from here. After that, run

python2 h5tool.py create_celeba_hq file_name_to_save /path/to/celeba_dataset/ /path/to/celeba_hq_deltas

This is what I used on my laptop

python2 h5tool.py create_celeba_hq /Users/yuan/Downloads/CelebA-HQ /Users/yuan/Downloads/CelebA/Original\ CelebA/ /Users/yuan/Downloads/CelebA/CelebA-HQ-Deltas

I found that MD5 checking were always failed, so I just commented out the MD5 checking part(LN 568 and LN 589)

With default setting, it took 1 day on my server. You can specific num_threads and num_tasks for accleration.

Training from scratch

You have to create CelebA-HQ dataset first, please follow the instructions above.

To obtain the similar results in samples directory, see train_no_tanh.py or train.py scipt for details(with default options). Both should work well. For example, you could run

conda create -n pytorch_p36 python=3.6 h5py matplotlib
source activate pytorch_p36
conda install pytorch torchvision -c pytorch
conda install scipy
pip install tensorflow

#0=first gpu, 1=2nd gpu ,2=3rd gpu etc...
python train.py --gpu 0,1,2 --train_kimg 600 --transition_kimg 600 --beta1 0 --beta2 0.99 --gan lsgan --first_resol 4 --target_resol 256 --no_tanh

train_kimg(transition_kimg) means after seeing train_kimg * 1000(transition_kimg * 1000) real images, switching to fade in(stabilize) phase. Currently only support LSGAN and GAN with --no_noise option, since WGAN-GP is unavailable, --drift option does not affect the result. --no_tanh means do not use tanh at generator's output layer.

If you are Python 2 user, You'd better add this to the top of train.py since I use print('something...', file=f) to write experiment settings to file.

from __future__ import print_function

Tensorboard

tensorboard --logdir='./logs'

Update history

  • Update(20171213): Update data.py, now when fading in, real images are weighted combination of current resolution images and 0.5x resolution images. This weighting trick is similar to the one used in Generator's outputs or Discriminator's inputs. This helps stabilize when fading in.

  • Update(20171129): Add restoration mode. Basides, after many trying, I failed to combine BEGAN and PG-GAN. It's removed from the repository.

  • Update(20171124): Now training with CelebA-HQ dataset. Besides, still failing to introduce progressive growing to BEGAN, even with many modifications.

  • Update(20171121): Introduced progressive growing to BEGAN, see train_began.py script. However, experiments showed that it did not work at this moment. Finding bugs and tuning network structure...

  • Update(20171119): Unstable came from resize_activation function, after replacing repeat by torch.nn.functional.upsample, problem solved. And now I believe that both train.py and train_no_tanh should be stable. Restored from 128x128 stabilize, and continued training, currently at 256x256, phase = fade in, temporary results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171118): Making mistake in resize activation function(repeat is not a right in this function), though it's wrong, it's still effective when resolution<256, but collapsed at resolution>=256. Changing it now, scripts will be updated tomorrow. Sorry for this mistake.

  • Update(20171117): 128x128 fade in results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171116): Adding noise only to RGB images might still collapse. Switching to the same trick as the paper suggested. Besides, the paper used linear as activation of G's output layer, which is reasonable, as I observed in the experiments. Temporary results: 64x64, phase=fade in, the left 4 columns are Generated, and the right 4 columns are from real samples(when fading in, instability might occur, for example, the following results is not so promising, however, as the training goes, it gets better), higher resolution will be available soon.

  • Update(20171115): Mode collapse happened when fading in, debugging... => It turns out that unstable seems to be normal when fading in, after some more iterations, it gets better. Now I'm not using the same noise adding trick as the paper suggested, however, it had been implemented, I will test it and plug it into the network.

  • Update(20171114): First version, seems that the generator tends to generate white image. Debugging now. => Fixed some bugs. Now seems normal, training... => There are some unknown problems when fading in, debugging...

  • Update(20171113): Generator and Discriminator: ok, simple test passed.

  • Update(20171112): It's now under reimplementation.

  • Update(20171111): It's still under implementation. I did not care design the structure, and now I had to reimplement(phase='fade in' is hard to implement under current structure). I also fixed some bugs, since reimplementation is needed, I do not plan to pull requests at this moment.

Reference implementation

Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022