Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

Overview

taganomaly

Anomaly detection labeling tool, specifically for multiple time series (one time series per category).

Taganomaly is a tool for creating labeled data for anomaly detection models. It allows the labeler to select points on a time series, further inspect them by looking at the behavior of other times series at the same time range, or by looking at the raw data that created this time series (assuming that the time series is an aggregated metric, counting events per time range)

Note: This tool was built as a part of a customer engagement, and is not maintained on a regular basis.

Click here to deploy on Azure using Azure Container Instances: Deploy to Azure

Table of contents

Using the app

The app has four main windows:

The labeling window

UI

Time series labeling

Time series

Selected points table view

Selected points

View raw data for window if exists

Detailed data

Compare this category with others over time

Compare

Find proposed anomalies using the Twitter AnomalyDetection package

Reference results

Observe the changes in distribution between categories

This could be useful to understand whether an anomaly was univariate or multivariate Distribution comparison

How to run locally

using R

This tool uses the shiny framework for visualizing events. In order to run it, you need to have R and preferably Rstudio. Once you have everything installed, open the project (taganomaly.Rproj) on R studio and click Run App, or call runApp() from the console. You might need to manually install the required packages

Requirements

  • R (3.4.0 or above)

Used packages:

  • shiny
  • dplyr
  • gridExtra
  • shinydashboard
  • DT
  • ggplot2
  • shinythemes
  • AnomalyDetection

Using Docker

Pull the image from Dockerhub:

docker pull omri374/taganomaly

Run:

docker run --rm -p 3838:3838 omri374/taganomaly

How to deploy using docker

Deploy to Azure

Deploy to Azure Web App for Containers or Azure Container Instances. More details here (webapp) and here (container instances)

Pull the image manually

Deploy this image to your own environment.

Building from source

In order to build a new Docker image, run the following commands from the root folder of the project:

sudo docker build -t taganomaly .

If you added new packages to your modified TagAnomaly version, make sure to specify these in the Dockerfile.

Once the docker image is built, run it by calling

docker run -p 3838:3838 taganomaly

Which would result in the shiny server app running on port 3838.

Instructions of use

  1. Import time series CSV file. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. (Optional) Import raw data time series CSV file. If the original time series is an aggreation over time windows, this time series is the raw values themselves. This way we could dive deeper into an anomalous value and see what it is comprised of. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. Select category (if exists)

  2. Select time range on slider

  3. Inspect your time series: (1): click on one time range on the table below the plot to see raw data on this time range (2): Open the "All Categories" tab to see how other time series behave on the same time range.

4.Select points on plot that look anomalous.

  1. Click "Add selected points" to add the marked points to the candidate list.

  2. Once you decide that these are actual anomalies, save the resulting table to csv by clicking on "Download labels set" and continue to the next category.

Current limitations

Points added but not saved will be lost in case the date slider or categories are changed, hence it is difficult to save multiple points from a complex time series. Once all segments are labeled, one can run the provided prep_labels.py file in order to concatenate all of TagAnomaly's output file to one CSV.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022