Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

Overview

taganomaly

Anomaly detection labeling tool, specifically for multiple time series (one time series per category).

Taganomaly is a tool for creating labeled data for anomaly detection models. It allows the labeler to select points on a time series, further inspect them by looking at the behavior of other times series at the same time range, or by looking at the raw data that created this time series (assuming that the time series is an aggregated metric, counting events per time range)

Note: This tool was built as a part of a customer engagement, and is not maintained on a regular basis.

Click here to deploy on Azure using Azure Container Instances: Deploy to Azure

Table of contents

Using the app

The app has four main windows:

The labeling window

UI

Time series labeling

Time series

Selected points table view

Selected points

View raw data for window if exists

Detailed data

Compare this category with others over time

Compare

Find proposed anomalies using the Twitter AnomalyDetection package

Reference results

Observe the changes in distribution between categories

This could be useful to understand whether an anomaly was univariate or multivariate Distribution comparison

How to run locally

using R

This tool uses the shiny framework for visualizing events. In order to run it, you need to have R and preferably Rstudio. Once you have everything installed, open the project (taganomaly.Rproj) on R studio and click Run App, or call runApp() from the console. You might need to manually install the required packages

Requirements

  • R (3.4.0 or above)

Used packages:

  • shiny
  • dplyr
  • gridExtra
  • shinydashboard
  • DT
  • ggplot2
  • shinythemes
  • AnomalyDetection

Using Docker

Pull the image from Dockerhub:

docker pull omri374/taganomaly

Run:

docker run --rm -p 3838:3838 omri374/taganomaly

How to deploy using docker

Deploy to Azure

Deploy to Azure Web App for Containers or Azure Container Instances. More details here (webapp) and here (container instances)

Pull the image manually

Deploy this image to your own environment.

Building from source

In order to build a new Docker image, run the following commands from the root folder of the project:

sudo docker build -t taganomaly .

If you added new packages to your modified TagAnomaly version, make sure to specify these in the Dockerfile.

Once the docker image is built, run it by calling

docker run -p 3838:3838 taganomaly

Which would result in the shiny server app running on port 3838.

Instructions of use

  1. Import time series CSV file. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. (Optional) Import raw data time series CSV file. If the original time series is an aggreation over time windows, this time series is the raw values themselves. This way we could dive deeper into an anomalous value and see what it is comprised of. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. Select category (if exists)

  2. Select time range on slider

  3. Inspect your time series: (1): click on one time range on the table below the plot to see raw data on this time range (2): Open the "All Categories" tab to see how other time series behave on the same time range.

4.Select points on plot that look anomalous.

  1. Click "Add selected points" to add the marked points to the candidate list.

  2. Once you decide that these are actual anomalies, save the resulting table to csv by clicking on "Download labels set" and continue to the next category.

Current limitations

Points added but not saved will be lost in case the date slider or categories are changed, hence it is difficult to save multiple points from a complex time series. Once all segments are labeled, one can run the provided prep_labels.py file in order to concatenate all of TagAnomaly's output file to one CSV.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022