We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

Overview

[SIGGRAPH Asia 2021] Time-Travel Rephotography

Open in Colab

[Project Website]

Many historical people were only ever captured by old, faded, black and white photos, that are distorted due to the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is retaining the identity and pose of the subject in the original photo, while discarding the many artifacts frequently seen in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.

Time-Travel Rephotography
Xuan Luo, Xuaner Zhang, Paul Yoo, Ricardo Martin-Brualla, Jason Lawrence, and Steven M. Seitz
In SIGGRAPH Asia 2021.

Demo

We provide an easy-to-get-started demo using Google Colab! The Colab will allow you to try our method on the sample Abraham Lincoln photo or your own photos using Cloud GPUs on Google Colab.

Open in Colab

Or you can run our method on your own machine following the instructions below.

Prerequisite

  • Pull third-party packages.
    git submodule update --init --recursive
    
  • Install python packages.
    conda create --name rephotography python=3.8.5
    conda activate rephotography
    conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
    pip install -r requirements.txt
    

Quick Start

Run our method on the example photo of Abraham Lincoln.

  • Download models:
    ./scripts/download_checkpoint.sh
    
  • Run:
    ./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75 
    
  • You can inspect the optimization process by
    tensorboard --logdir "log/Abraham Lincoln_01"
    
  • You can find your results as below.
    results/
      Abraham Lincoln_01/       # intermediate outputs for histogram matching and face parsing
      Abraham Lincoln_01_b.png  # the input after matching the histogram of the sibling image
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.png        # the sibling image
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.pt         # the sibing latent codes and initialized noise maps
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).png             # the output result
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).pt              # the final optimized latent codes and noise maps
      Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-rand.png        # the result with the final latent codes but random noise maps
    
    

Run on Your Own Image

  • Crop and align the head regions of your images:

    python -m tools.data.align_images <input_raw_image_dir> <aligned_image_dir>
    
  • Run:

    ./scripts/run.sh <spectral_sensitivity> <input_image_path> <blur_radius>
    

    The spectral_sensitivity can be b (blue-sensitive), gb (orthochromatic), or g (panchromatic). You can roughly estimate the spectral_sensitivity of your photo as follows. Use the blue-sensitive model for photos before 1873, manually select between blue-sensitive and orthochromatic for images from 1873 to 1906 and among all models for photos taken afterwards.

    The blur_radius is the estimated gaussian blur radius in pixels if the input photot is resized to 1024x1024.

Historical Wiki Face Dataset

Path Size Description
Historical Wiki Face Dataset.zip 148 MB Images
spectral_sensitivity.json 6 KB Spectral sensitivity (b, gb, or g).
blur_radius.json 6 KB Blur radius in pixels

The jsons are dictionares that map input names to the corresponding spectral sensitivity or blur radius. Due to copyright constraints, Historical Wiki Face Dataset.zip contains all images in the Historical Wiki Face Dataset that were used in our user study except the photo of Mao Zedong. You can download it separately and crop it as above.

Citation

If you find our code useful, please consider citing our paper:

@article{Luo-Rephotography-2021,
  author    = {Luo, Xuan and Zhang, Xuaner and Yoo, Paul and Martin-Brualla, Ricardo and Lawrence, Jason and Seitz, Steven M.},
  title     = {Time-Travel Rephotography},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2021)},
  publisher = {ACM New York, NY, USA},
  volume = {40},
  number = {6},
  articleno = {213},
  doi = {https://doi.org/10.1145/3478513.3480485},
  year = {2021},
  month = {12}
}

License

This work is licensed under MIT License. See LICENSE for details.

Codes for the StyleGAN2 model come from https://github.com/rosinality/stylegan2-pytorch.

Acknowledgments

We thank Nick Brandreth for capturing the dry plate photos. We thank Bo Zhang, Qingnan Fan, Roy Or-El, Aleksander Holynski and Keunhong Park for insightful advice.

Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022