CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

Overview

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

This is the official implementation code of the paper "CondLaneNet: a Top-to-down Lane Detection Framework Based on ConditionalConvolution". (Link: https://arxiv.org/abs/2105.05003) We achieve state-of-the-art performance on multiple lane detection benchmarks.

Architecture,

Installation

This implementation is based on mmdetection(v2.0.0). Please refer to install.md for installation.

Datasets

We conducted experiments on CurveLanes, CULane and TuSimple. Please refer to dataset.md for installation.

Models

For your convenience, we provide the following trained models on Curvelanes, CULane, and TuSimple datasets

Model Speed F1 Link
curvelanes_small 154FPS 85.09 download
curvelanes_medium 109FPS 85.92 download
curvelanes_large 48FPS 86.10 download
culane_small 220FPS 78.14 download
culane_medium 152FPS 78.74 download
culane_large 58FPS 79.48 download
tusimple_small 220FPS 97.01 download
tusimple_medium 152FPS 96.98 download
tusimple_large 58FPS 97.24 download

Testing

CurveLanes 1 Edit the "data_root" in the config file to your Curvelanes dataset path. For example, for the small version, open "configs/curvelanes/curvelanes_small_test.py" and set "data_root" to "[your-data-path]/curvelanes".

2 run the test script

cd [project-root]
python tools/condlanenet/curvelanes/test_curvelanes.py configs/condlanenet/curvelanes/curvelanes_small_test.py [model-path] --evaluate

If "--evaluate" is added, the evaluation results will be printed. If you want to save the visualization results, you can add "--show" and add "--show_dst" to specify the save path.

CULane

1 Edit the "data_root" in the config file to your CULane dataset path. For example,for the small version, you should open "configs/culane/culane_small_test.py" and set the "data_root" to "[your-data-path]/culane".

2 run the test script

cd [project-root]
python tools/condlanenet/culane/test_culane.py configs/condlanenet/culane/culane_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of SCNN to evaluate the results.

TuSimple

1 Edit the "data_root" in the config file to your TuSimple dataset path. For example,for the small version, you should open "configs/tusimple/tusimple_small_test.py" and set the "data_root" to "[your-data-path]/tuSimple".

2 run the test script

cd [project-root]
python tools/condlanenet/tusimple/test_tusimple.py configs/condlanenet/tusimple/tusimple_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of TuSimple to evaluate the results.

Speed Test

cd [project-root]
python tools/condlanenet/speed_test.py configs/condlanenet/culane/culane_small_test.py [model-path]

Training

For example, train CULane using 4 gpus:

cd [project-root]
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29001 tools/dist_train.sh configs/condlanenet/culane/culane_small_train.py 4 --no-validate 

Results

CurveLanes

Model F1 Speed GFLOPS
Small(ResNet-18) 85.09 154FPS 10.3
Medium(ResNet-34) 85.92 109FPS 19.7
Large(ResNet-101) 86.10 48FPS 44.9

CULane

Model F1 Speed GFLOPS
Small(ResNet-18) 78.14 220FPS 10.2
Medium(ResNet-34) 78.74 152FPS 19.6
Large(ResNet-101) 79.48 58FPS 44.8

TuSimple

Model F1 Speed GFLOPS
Small(ResNet-18) 97.01 220FPS 10.2
Medium(ResNet-34) 96.98 152FPS 19.6
Large(ResNet-101) 97.24 58FPS 44.8

Visualization results

Results

Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022