This is a project based on retinaface face detection, including ghostnet and mobilenetv3

Overview

English | 简体中文

RetinaFace in PyTorch

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

stream

Face recognition with masks is still robust-----------------------------------

stream

Version Run Library Test of pytorch_retinaface

How well retinaface works can only be verified by comparison experiments. Here we test the pytorch_retinaface version, which is the one with the highest star among all versions in the community.

Data set preparation

This address contains the clean Wideface dataset:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

在这里插入图片描述

The downloaded dataset contains a total of these three.

在这里插入图片描述

At this point the folder is image only, however the author requires the data in the format of:

在这里插入图片描述

So we are still missing the index file for the data, and this is the time to use the script provided by the authorwider_val.py. Export the image information to a txt file, the full format of the export is as follows.

在这里插入图片描述

Each dataset has a txt file containing the sample information. The content of the txt file is roughly like this (take train.txt as an example), containing image information and face location information.

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82
# 0--Parade/0_Parade_Parade_0_904.jpg
361 98 263 339 424.143 251.656 0.0 547.134 232.571 0.0 494.121 325.875 0.0 453.83 368.286 0.0 561.978 342.839 0.0 0.89

Model Training

python train.py --network mobile0.25 

If necessary, please download the pre-trained model first and put it in the weights folder. If you want to start training from scratch, specify 'pretrain': False, in the data/config.py file.

Model Evaluation

cd ./widerface_evaluate
python setup.py build_ext --inplace
python test_widerface.py --trained_model ./weights/mobilenet0.25_Final.pth --network mobile0.25
python widerface_evaluate/evaluation.py

GhostNet and MobileNetv3 migration backbone

3.1 pytorch_retinaface source code modification

After the test in the previous section, and took a picture containing only one face for detection, it can be found that resnet50 for the detection of a single picture and the picture contains only a single face takes longer, if the project focuses on real-time then mb0.25 is a better choice, but for the face dense and small-scale scenario is more strenuous. If the skeleton is replaced by another backbone, is it possible to balance real-time and accuracy? The backbone replacement here temporarily uses ghostnet and mobilev3 network (mainly also want to test whether the effect of these two networks can be as outstanding as the paper).

We specify the relevant reference in the parent class of the retinaface.py file,and specify the network layer ID to be called in IntermediateLayerGetter(backbone, cfg['return_layers']), which is specified in the config.py file as follows.

def __init__(self, cfg=None, phase='train'):
    """
    :param cfg:  Network related settings.
    :param phase: train or test.
    """
    super(RetinaFace, self).__init__()
    self.phase = phase
    backbone = None
    if cfg['name'] == 'mobilenet0.25':
        backbone = MobileNetV1()
        if cfg['pretrain']:
            checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
            from collections import OrderedDict
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict'].items():
                name = k[7:]  # remove module.
                new_state_dict[name] = v
            # load params
            backbone.load_state_dict(new_state_dict)
    elif cfg['name'] == 'Resnet50':
        import torchvision.models as models
        backbone = models.resnet50(pretrained=cfg['pretrain'])
    elif cfg['name'] == 'ghostnet':
        backbone = ghostnet()
    elif cfg['name'] == 'mobilev3':
        backbone = MobileNetV3()

    self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])

We specify the number of network channels of the FPN and fix the in_channels of each layer for the three-layer FPN structure formulated in the model.

in_channels_stage2 = cfg['in_channel']
        in_channels_list = [
            in_channels_stage2 * 2,
            in_channels_stage2 * 4,
            in_channels_stage2 * 8,
        ]
        out_channels = cfg['out_channel']
        # self.FPN = FPN(in_channels_list, out_channels)
        self.FPN = FPN(in_channels_list, out_channels)

We insert the ghontnet network in models/ghostnet.py, and the network structure comes from the Noah's Ark Labs open source addresshttps://github.com/huawei-noah/ghostnet

Lightweight network classification effect comparison:

stream

Because of the inclusion of the residual convolution separation module and the SE module, the source code is relatively long, and the source code of the modified network is as followsmodels/ghostnet.py

We insert the MobileNetv3 network in models/mobilev3.py. The network structure comes from the pytorch version reproduced by github users, so it's really plug-and-playhttps://github.com/kuan-wang/pytorch-mobilenet-v3

The modified source code is as follows.models/mobilenetv3.py

3.2 Model Training

Execute the command: python train.py --network ghostnet to start training

stream

Counting the duration of training a single epoch per network.

  • resnet50>>mobilenetv3>ghostnet-m>ghostnet-s>mobilenet0.25

3.3 Model Testing and Evaluation

Test GhostNet(se-ratio=0.25):

As you can see, a batch test is about 56ms

Evaluation GhostNet(se-ratio=0.25): 在这里插入图片描述

It can be seen that ghostnet is relatively poor at recognizing small sample data and face occlusion.

Test MobileNetV3(se-ratio=1):

在这里插入图片描述

可以看出,一份batch的测试大概在120ms左右

Evaluation MobileNetV3(se-ratio=1): 在这里插入图片描述

The evaluation here outperforms ghostnet on all three subsets (the comparison here is actually a bit unscientific, because the full se_ratio of mbv3 is used to benchmark ghostnet's se_ratio by 1/4, but the full se_ratio of ghostnet will cause the model memory to skyrocket (at se-ratio=0) weights=6M, se-ratio=0.25 when weights=12M, se-ratio=1 when weights=30M, and the accuracy barely exceeds that of MobileNetV3 with se-ratio=1, I personally feel that the cost performance is too low)

Translated with www.DeepL.com/Translator (free version)

3.4 Model Demo

  • Use webcam:

    python detect.py -fourcc 0

  • Detect Face:

    python detect.py --image img_path

  • Detect Face and save:

    python detect.py --image img_path --sava_image True

3.2 comparision of resnet & mbv3 & gnet & mb0.25

Reasoning Performance Comparison:

Backbone Computing backend size(MB) Framework input_size Run time
resnet50 Core i5-4210M 106 torch 640 1571 ms
$GhostNet-m^{Se=0.25}$ Core i5-4210M 12 torch 640 403 ms
MobileNet v3 Core i5-4210M 8 torch 640 576 ms
MobileNet0.25 Core i5-4210M 1.7 torch 640 187 ms
MobileNet0.25 Core i5-4210M 1.7 onnxruntime 640 73 ms

Testing performance comparison:

Backbone Easy Medium Hard
resnet50 95.48% 94.04% 84.43%
$MobileNet v3^{Se=1}$ 93.48% 91.23% 80.19%
$GhostNet-m^{Se=0.25}$ 93.35% 90.84% 76.11%
MobileNet0.25 90.70% 88.16% 73.82%

Comparison of the effect of single chart test:

stream

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

References

Owner
pogg
Hello, I'm pogg. I will record some interesting experiment here.
pogg
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022