Source code for our paper "Empathetic Response Generation with State Management"

Overview

Source code for our paper "Empathetic Response Generation with State Management"

this repository is maintained by both Jun Gao and Yuhan Liu

Model Overview

model

Environment Requirement

  • pytorch >= 1.4
  • sklearn
  • nltk
  • numpy
  • bert-score

Dataset

you can directly use the processed dataset located in data/empathetic:

├── data
│   ├── empathetic
│   │   ├── parsed_emotion_Ekman_intent_test.json
│   │   ├── parsed_emotion_Ekman_intent_train.json
│   │   ├── parsed_emotion_Ekman_intent_valid.json
│   │   ├── emotion_intent_trans.mat
│   │   ├── goEmotion_emotion_trans.mat

Or you want to reproduce the data annotated with goEmotion emotion classifier and empathetic intent classifier, you can run the command:

  • convert raw csv empathetic dialogue data into json format. (origin dataset link: EmpatheticDialogues)

    bash preprocess_raw.sh
  • train emotion classfier with goEmotion dataset and annotate (origin dataset link: goEmotion). Here $BERT_DIR is your pretrained BERT model directory which includes vocab.txt, config.json and pytorch_model.bin, here we simply use bert-base-en from Hugginface

    bash ./bash/emotion_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • train intent classfier with empathetic intent dataset and annotate (origin dataset link: Empathetic_Intent)

    bash ./bash/intent_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • build prior emotion-emotion and emotion-intent transition matrix

    bash ./bash/build_transition_mat.sh

Train

For training the LM-based model, you need to download bert-base-en and gpt2-small from Hugginface first, then run the following command. Here $GPT_DIR and $BERT_DIR are the downloaded model directory:

bash ./bash/train_LM.sh --gpt_path $GPT_DIR --bert_path $BERT_DIR --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

for example:

bash ./bash/train_LM.sh --gpt_path /home/liuyuhan/datasets/gpt2-small --bert_path /home/liuyuhan/datasets/bert-base-en bert-base-en --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

For training the Trs-based model, we use glove.6B.300d as the pretrained word embeddings. You can run the following command to train model. Here $GLOVE is the glove embedding txt file.

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove $GLOVE

for example:

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove /home/liuyuhan/datasets/glove/glove.6B.300d.txt

Evaluate

To generate the automatic metric results, firstly you need to make sure that bert-score is successfully installed. In our paper, we use roberta-large-en rescaled with baseline to calculate BERTScore. You can download roberta-large-en from Hugginface. For the rescaled_baseline file, we can download it from here and put it under the roberta-large-en model directory.

Then you can run the following command to get the result, here $hypothesis and $reference are the generated response file and ground-truth response file. $result is the output result file. $ROBERTA_DIR is the downloaded roberta-large-en model directory.

To evaluate LM-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode LM

To evaluate Trs-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref_tokenize.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode Trs
Owner
Yuhan Liu
NLPer
Yuhan Liu
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022