Source code for our paper "Empathetic Response Generation with State Management"

Overview

Source code for our paper "Empathetic Response Generation with State Management"

this repository is maintained by both Jun Gao and Yuhan Liu

Model Overview

model

Environment Requirement

  • pytorch >= 1.4
  • sklearn
  • nltk
  • numpy
  • bert-score

Dataset

you can directly use the processed dataset located in data/empathetic:

├── data
│   ├── empathetic
│   │   ├── parsed_emotion_Ekman_intent_test.json
│   │   ├── parsed_emotion_Ekman_intent_train.json
│   │   ├── parsed_emotion_Ekman_intent_valid.json
│   │   ├── emotion_intent_trans.mat
│   │   ├── goEmotion_emotion_trans.mat

Or you want to reproduce the data annotated with goEmotion emotion classifier and empathetic intent classifier, you can run the command:

  • convert raw csv empathetic dialogue data into json format. (origin dataset link: EmpatheticDialogues)

    bash preprocess_raw.sh
  • train emotion classfier with goEmotion dataset and annotate (origin dataset link: goEmotion). Here $BERT_DIR is your pretrained BERT model directory which includes vocab.txt, config.json and pytorch_model.bin, here we simply use bert-base-en from Hugginface

    bash ./bash/emotion_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • train intent classfier with empathetic intent dataset and annotate (origin dataset link: Empathetic_Intent)

    bash ./bash/intent_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • build prior emotion-emotion and emotion-intent transition matrix

    bash ./bash/build_transition_mat.sh

Train

For training the LM-based model, you need to download bert-base-en and gpt2-small from Hugginface first, then run the following command. Here $GPT_DIR and $BERT_DIR are the downloaded model directory:

bash ./bash/train_LM.sh --gpt_path $GPT_DIR --bert_path $BERT_DIR --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

for example:

bash ./bash/train_LM.sh --gpt_path /home/liuyuhan/datasets/gpt2-small --bert_path /home/liuyuhan/datasets/bert-base-en bert-base-en --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

For training the Trs-based model, we use glove.6B.300d as the pretrained word embeddings. You can run the following command to train model. Here $GLOVE is the glove embedding txt file.

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove $GLOVE

for example:

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove /home/liuyuhan/datasets/glove/glove.6B.300d.txt

Evaluate

To generate the automatic metric results, firstly you need to make sure that bert-score is successfully installed. In our paper, we use roberta-large-en rescaled with baseline to calculate BERTScore. You can download roberta-large-en from Hugginface. For the rescaled_baseline file, we can download it from here and put it under the roberta-large-en model directory.

Then you can run the following command to get the result, here $hypothesis and $reference are the generated response file and ground-truth response file. $result is the output result file. $ROBERTA_DIR is the downloaded roberta-large-en model directory.

To evaluate LM-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode LM

To evaluate Trs-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref_tokenize.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode Trs
Owner
Yuhan Liu
NLPer
Yuhan Liu
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022