DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Overview

DatasetGAN

This is the official code and data release for:

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Yuxuan Zhang*, Huan Ling*, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, Sanja Fidler

CVPR'21, Oral [paper] [supplementary] [Project Page]

News

  • Benchmark Challenge - A benchmark with diversed testing images is coming soon -- stay tuned!

  • Generated dataset for downstream tasks is coming soon -- stay tuned!

License

For any code dependency related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. To view a copy of this license, visit LICENSE.

The code of DatasetGAN is released under the MIT license. See LICENSE for additional details.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Download Dataset from google drive and put it in the folder of ./datasetGAN/dataset_release. Please be aware that the dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Download pretrained checkpoint from Stylegan and convert the tensorflow checkpoint to pytorch. Put checkpoints in the folder of ./datasetGAN/dataset_release/stylegan_pretrain. Please be aware that the any code dependency and checkpoint related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Note: a good example of converting stylegan tensorlow checkpoint to pytorch is available this Link.

Training

To reproduce paper DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort:

cd datasetGAN
  1. Run Step1: Interpreter training.
  2. Run Step2: Sampling to generate massive annotation-image dataset.
  3. Run Step3: Train Downstream Task.

1. Interpreter Training

python train_interpreter.py --exp experiments/.json 

Note: Training time for 16 images is around one hour. 160G RAM is required to run 16 images training. One can cache the data returned from prepare_data function to disk but it will increase trianing time due to I/O burden.

Example of annotation schema for Face class. Please refer to paper for other classes.

img

2. Run GAN Sampling

python train_interpreter.py \
--generate_data True --exp experiments/.json  \
--resume [path-to-trained-interpreter in step3] \
--num_sample [num-samples]

To run sampling processes in parallel

sh datasetGAN/script/generate_face_dataset.sh

Example of sampling images and annotation:

img

3. Train Downstream Task

python train_deeplab.py \
--data_path [path-to-generated-dataset in step4] \
--exp experiments/.json

Inference

img

python test_deeplab_cross_validation.py --exp experiments/face_34.json\
--resume [path-to-downstream task checkpoint] --cross_validate True

June 21st Update:

For training interpreter, we change the upsampling method from nearnest upsampling to bilinar upsampling in line and update results in Table 1. The table reports mIOU.

Citations

Please ue the following citation if you use our data or code:

@inproceedings{zhang2021datasetgan,
  title={Datasetgan: Efficient labeled data factory with minimal human effort},
  author={Zhang, Yuxuan and Ling, Huan and Gao, Jun and Yin, Kangxue and Lafleche, Jean-Francois and Barriuso, Adela and Torralba, Antonio and Fidler, Sanja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10145--10155},
  year={2021}
}
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022