Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

Overview

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral)

Project | Paper

Official PyTorch implementation of the paper: "DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample".

DeepSIM: Given a single real training image (b) and a corresponding primitive representation (a), our model learns to map between the primitive (a) to the target image (b). At inference, the original primitive (a) is manipulated by the user. Then, the manipulated primitive is passed through the network which outputs a corresponding manipulated image (e) in the real image domain.


DeepSIM was trained on a single training pair, shown to the left of each sample. First row "face" output- (left) flipping eyebrows, (right) lifting nose. Second row "dog" output- changing shape of dog's hat, removing ribbon, and making face longer. Second row "car" output- (top) adding wheel, (bottom) conversion to sports car.


DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
Yael Vinker*, Eliahu Horwitz*, Nir Zabari, Yedid Hoshen
*Equal contribution
https://arxiv.org/pdf/2007.01289

Abstract: We present DeepSIM, a generative model for conditional image manipulation based on a single image. We find that extensive augmentation is key for enabling single image training, and incorporate the use of thin-plate-spline (TPS) as an effective augmentation. Our network learns to map between a primitive representation of the image to the image itself. The choice of a primitive representation has an impact on the ease and expressiveness of the manipulations and can be automatic (e.g. edges), manual (e.g. segmentation) or hybrid such as edges on top of segmentations. At manipulation time, our generator allows for making complex image changes by modifying the primitive input representation and mapping it through the network. Our method is shown to achieve remarkable performance on image manipulation tasks.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/DeepSIM.git
cd DeepSIM
  1. Create a new environment and install the libraries:
python3.7 -m venv deepsim_venv
source deepsim_venv/bin/activate
pip install -r requirements.txt


Training

The input primitive used for training should be specified using --primitive and can be one of the following:

  1. "seg" - train using segmentation only
  2. "edges" - train using edges only
  3. "seg_edges" - train using a combination of edges and segmentation
  4. "manual" - could be anything (for example, a painting)

For the chosen option, a suitable input file should be provided under /"train_" (e.g. ./datasets/car/train_seg). For automatic edges, you can leave the "train_edges" folder empty, and an edge map will be generated automatically. Note that for the segmentation primitive option, you must verify that the input at test time fits exactly the input at train time in terms of colors.

To train on CPU please specify --gpu_ids '-1'.

  • Train DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/train_face_vid_seg_edges.sh):
#!./scripts/train_face_vid_seg_edges.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideo
  • Train DeepSIM on the "car" image using segmentation only (bash ./scripts/train_car_seg.sh):
#!./scripts/train_car_seg.sh
python3.7 ./train.py --dataroot ./datasets/car --primitive seg --no_instance --tps_aug 1 --name DeepSIMCar
  • Train DeepSIM on the "face" image using edges only (bash ./scripts/train_face_edges.sh):
#!./scripts/train_face_edges.sh
python3.7 ./train.py --dataroot ./datasets/face --primitive edges --no_instance --tps_aug 1 --name DeepSIMFace

Testing

  • Test DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/test_face_vid_seg_edges.sh):
#!./scripts/test_face_vid_seg_edges.sh
python3.7 ./test.py --dataroot ./datasets/face_video --primitive seg_edges --phase "test" --no_instance --name DeepSIMFaceVideo --vid_mode 1 --test_canny_sigma 0.5
  • Test DeepSIM on the "car" image using segmentation only (bash ./scripts/test_car_seg.sh):
#!./scripts/test_car_seg.sh
python3.7 ./test.py --dataroot ./datasets/car --primitive seg --phase "test" --no_instance --name DeepSIMCar
  • Test DeepSIM on the "face" image using edges only (bash ./scripts/test_face_edges.sh):
#!./scripts/test_face_edges.sh
python3.7 ./test.py --dataroot ./datasets/face --primitive edges --phase "test" --no_instance --name DeepSIMFace

Additional Augmentations

As shown in the supplementary, adding augmentations on top of TPS may lead to better results

  • Train DeepSIM on the "face" video using both edges and segmentations with sheer, rotations, "cutmix", and canny sigma augmentations (bash ./scripts/train_face_vid_seg_edges_all_augmentations.sh):
#!./scripts/train_face_vid_seg_edges_all_augmentations.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideoAugmentations --cutmix_aug 1 --affine_aug "shearx_sheary_rotation" --canny_aug 1
  • When using edges or seg_edges, it may be beneficial to have white edges instead of black ones, to do so add the --canny_color 1 option
  • Check ./options/base_options.py for more augmentation related settings
  • When using edges or seg_edges and adding edges manually at test time, it may be beneficial to apply "skeletonize" (e.g skimage skeletonize )on the edges in order for them to resemble the canny edges

More Results

Top row - primitive images. Left - original pair used for training. Center- switching the positions between the two rightmost cars. Right- removing the leftmost car and inpainting the background.


The leftmost column shows the source image, then each column demonstrate the result of our model when trained on the specified primitive. We manipulated the image primitives, adding a right eye, changing the point of view and shortening the beak. Our results are presented next to each manipulated primitive. The combined primitive performed best on high-level changes (e.g. the eye), and low-level changes (e.g. the background).


On the left is the training image pair, in the middle are the manipulated primitives and on the right are the manipulated outputs- left to right: dress length, strapless, wrap around the neck.

Single Image Animation

Animation to Video

Video to Animation

Citation

If you find this useful for your research, please use the following.

@InProceedings{Vinker_2021_ICCV,
    author    = {Vinker, Yael and Horwitz, Eliahu and Zabari, Nir and Hoshen, Yedid},
    title     = {Image Shape Manipulation From a Single Augmented Training Sample},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13769-13778}
}

Acknowledgments

Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022