Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

Overview

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral)

Project | Paper

Official PyTorch implementation of the paper: "DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample".

DeepSIM: Given a single real training image (b) and a corresponding primitive representation (a), our model learns to map between the primitive (a) to the target image (b). At inference, the original primitive (a) is manipulated by the user. Then, the manipulated primitive is passed through the network which outputs a corresponding manipulated image (e) in the real image domain.


DeepSIM was trained on a single training pair, shown to the left of each sample. First row "face" output- (left) flipping eyebrows, (right) lifting nose. Second row "dog" output- changing shape of dog's hat, removing ribbon, and making face longer. Second row "car" output- (top) adding wheel, (bottom) conversion to sports car.


DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
Yael Vinker*, Eliahu Horwitz*, Nir Zabari, Yedid Hoshen
*Equal contribution
https://arxiv.org/pdf/2007.01289

Abstract: We present DeepSIM, a generative model for conditional image manipulation based on a single image. We find that extensive augmentation is key for enabling single image training, and incorporate the use of thin-plate-spline (TPS) as an effective augmentation. Our network learns to map between a primitive representation of the image to the image itself. The choice of a primitive representation has an impact on the ease and expressiveness of the manipulations and can be automatic (e.g. edges), manual (e.g. segmentation) or hybrid such as edges on top of segmentations. At manipulation time, our generator allows for making complex image changes by modifying the primitive input representation and mapping it through the network. Our method is shown to achieve remarkable performance on image manipulation tasks.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/DeepSIM.git
cd DeepSIM
  1. Create a new environment and install the libraries:
python3.7 -m venv deepsim_venv
source deepsim_venv/bin/activate
pip install -r requirements.txt


Training

The input primitive used for training should be specified using --primitive and can be one of the following:

  1. "seg" - train using segmentation only
  2. "edges" - train using edges only
  3. "seg_edges" - train using a combination of edges and segmentation
  4. "manual" - could be anything (for example, a painting)

For the chosen option, a suitable input file should be provided under /"train_" (e.g. ./datasets/car/train_seg). For automatic edges, you can leave the "train_edges" folder empty, and an edge map will be generated automatically. Note that for the segmentation primitive option, you must verify that the input at test time fits exactly the input at train time in terms of colors.

To train on CPU please specify --gpu_ids '-1'.

  • Train DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/train_face_vid_seg_edges.sh):
#!./scripts/train_face_vid_seg_edges.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideo
  • Train DeepSIM on the "car" image using segmentation only (bash ./scripts/train_car_seg.sh):
#!./scripts/train_car_seg.sh
python3.7 ./train.py --dataroot ./datasets/car --primitive seg --no_instance --tps_aug 1 --name DeepSIMCar
  • Train DeepSIM on the "face" image using edges only (bash ./scripts/train_face_edges.sh):
#!./scripts/train_face_edges.sh
python3.7 ./train.py --dataroot ./datasets/face --primitive edges --no_instance --tps_aug 1 --name DeepSIMFace

Testing

  • Test DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/test_face_vid_seg_edges.sh):
#!./scripts/test_face_vid_seg_edges.sh
python3.7 ./test.py --dataroot ./datasets/face_video --primitive seg_edges --phase "test" --no_instance --name DeepSIMFaceVideo --vid_mode 1 --test_canny_sigma 0.5
  • Test DeepSIM on the "car" image using segmentation only (bash ./scripts/test_car_seg.sh):
#!./scripts/test_car_seg.sh
python3.7 ./test.py --dataroot ./datasets/car --primitive seg --phase "test" --no_instance --name DeepSIMCar
  • Test DeepSIM on the "face" image using edges only (bash ./scripts/test_face_edges.sh):
#!./scripts/test_face_edges.sh
python3.7 ./test.py --dataroot ./datasets/face --primitive edges --phase "test" --no_instance --name DeepSIMFace

Additional Augmentations

As shown in the supplementary, adding augmentations on top of TPS may lead to better results

  • Train DeepSIM on the "face" video using both edges and segmentations with sheer, rotations, "cutmix", and canny sigma augmentations (bash ./scripts/train_face_vid_seg_edges_all_augmentations.sh):
#!./scripts/train_face_vid_seg_edges_all_augmentations.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideoAugmentations --cutmix_aug 1 --affine_aug "shearx_sheary_rotation" --canny_aug 1
  • When using edges or seg_edges, it may be beneficial to have white edges instead of black ones, to do so add the --canny_color 1 option
  • Check ./options/base_options.py for more augmentation related settings
  • When using edges or seg_edges and adding edges manually at test time, it may be beneficial to apply "skeletonize" (e.g skimage skeletonize )on the edges in order for them to resemble the canny edges

More Results

Top row - primitive images. Left - original pair used for training. Center- switching the positions between the two rightmost cars. Right- removing the leftmost car and inpainting the background.


The leftmost column shows the source image, then each column demonstrate the result of our model when trained on the specified primitive. We manipulated the image primitives, adding a right eye, changing the point of view and shortening the beak. Our results are presented next to each manipulated primitive. The combined primitive performed best on high-level changes (e.g. the eye), and low-level changes (e.g. the background).


On the left is the training image pair, in the middle are the manipulated primitives and on the right are the manipulated outputs- left to right: dress length, strapless, wrap around the neck.

Single Image Animation

Animation to Video

Video to Animation

Citation

If you find this useful for your research, please use the following.

@InProceedings{Vinker_2021_ICCV,
    author    = {Vinker, Yael and Horwitz, Eliahu and Zabari, Nir and Hoshen, Yedid},
    title     = {Image Shape Manipulation From a Single Augmented Training Sample},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13769-13778}
}

Acknowledgments

Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022