Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

Overview

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral)

Project | Paper

Official PyTorch implementation of the paper: "DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample".

DeepSIM: Given a single real training image (b) and a corresponding primitive representation (a), our model learns to map between the primitive (a) to the target image (b). At inference, the original primitive (a) is manipulated by the user. Then, the manipulated primitive is passed through the network which outputs a corresponding manipulated image (e) in the real image domain.


DeepSIM was trained on a single training pair, shown to the left of each sample. First row "face" output- (left) flipping eyebrows, (right) lifting nose. Second row "dog" output- changing shape of dog's hat, removing ribbon, and making face longer. Second row "car" output- (top) adding wheel, (bottom) conversion to sports car.


DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
Yael Vinker*, Eliahu Horwitz*, Nir Zabari, Yedid Hoshen
*Equal contribution
https://arxiv.org/pdf/2007.01289

Abstract: We present DeepSIM, a generative model for conditional image manipulation based on a single image. We find that extensive augmentation is key for enabling single image training, and incorporate the use of thin-plate-spline (TPS) as an effective augmentation. Our network learns to map between a primitive representation of the image to the image itself. The choice of a primitive representation has an impact on the ease and expressiveness of the manipulations and can be automatic (e.g. edges), manual (e.g. segmentation) or hybrid such as edges on top of segmentations. At manipulation time, our generator allows for making complex image changes by modifying the primitive input representation and mapping it through the network. Our method is shown to achieve remarkable performance on image manipulation tasks.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/DeepSIM.git
cd DeepSIM
  1. Create a new environment and install the libraries:
python3.7 -m venv deepsim_venv
source deepsim_venv/bin/activate
pip install -r requirements.txt


Training

The input primitive used for training should be specified using --primitive and can be one of the following:

  1. "seg" - train using segmentation only
  2. "edges" - train using edges only
  3. "seg_edges" - train using a combination of edges and segmentation
  4. "manual" - could be anything (for example, a painting)

For the chosen option, a suitable input file should be provided under /"train_" (e.g. ./datasets/car/train_seg). For automatic edges, you can leave the "train_edges" folder empty, and an edge map will be generated automatically. Note that for the segmentation primitive option, you must verify that the input at test time fits exactly the input at train time in terms of colors.

To train on CPU please specify --gpu_ids '-1'.

  • Train DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/train_face_vid_seg_edges.sh):
#!./scripts/train_face_vid_seg_edges.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideo
  • Train DeepSIM on the "car" image using segmentation only (bash ./scripts/train_car_seg.sh):
#!./scripts/train_car_seg.sh
python3.7 ./train.py --dataroot ./datasets/car --primitive seg --no_instance --tps_aug 1 --name DeepSIMCar
  • Train DeepSIM on the "face" image using edges only (bash ./scripts/train_face_edges.sh):
#!./scripts/train_face_edges.sh
python3.7 ./train.py --dataroot ./datasets/face --primitive edges --no_instance --tps_aug 1 --name DeepSIMFace

Testing

  • Test DeepSIM on the "face" video using both edges and segmentations (bash ./scripts/test_face_vid_seg_edges.sh):
#!./scripts/test_face_vid_seg_edges.sh
python3.7 ./test.py --dataroot ./datasets/face_video --primitive seg_edges --phase "test" --no_instance --name DeepSIMFaceVideo --vid_mode 1 --test_canny_sigma 0.5
  • Test DeepSIM on the "car" image using segmentation only (bash ./scripts/test_car_seg.sh):
#!./scripts/test_car_seg.sh
python3.7 ./test.py --dataroot ./datasets/car --primitive seg --phase "test" --no_instance --name DeepSIMCar
  • Test DeepSIM on the "face" image using edges only (bash ./scripts/test_face_edges.sh):
#!./scripts/test_face_edges.sh
python3.7 ./test.py --dataroot ./datasets/face --primitive edges --phase "test" --no_instance --name DeepSIMFace

Additional Augmentations

As shown in the supplementary, adding augmentations on top of TPS may lead to better results

  • Train DeepSIM on the "face" video using both edges and segmentations with sheer, rotations, "cutmix", and canny sigma augmentations (bash ./scripts/train_face_vid_seg_edges_all_augmentations.sh):
#!./scripts/train_face_vid_seg_edges_all_augmentations.sh
python3.7 ./train.py --dataroot ./datasets/face_video --primitive seg_edges --no_instance --tps_aug 1 --name DeepSIMFaceVideoAugmentations --cutmix_aug 1 --affine_aug "shearx_sheary_rotation" --canny_aug 1
  • When using edges or seg_edges, it may be beneficial to have white edges instead of black ones, to do so add the --canny_color 1 option
  • Check ./options/base_options.py for more augmentation related settings
  • When using edges or seg_edges and adding edges manually at test time, it may be beneficial to apply "skeletonize" (e.g skimage skeletonize )on the edges in order for them to resemble the canny edges

More Results

Top row - primitive images. Left - original pair used for training. Center- switching the positions between the two rightmost cars. Right- removing the leftmost car and inpainting the background.


The leftmost column shows the source image, then each column demonstrate the result of our model when trained on the specified primitive. We manipulated the image primitives, adding a right eye, changing the point of view and shortening the beak. Our results are presented next to each manipulated primitive. The combined primitive performed best on high-level changes (e.g. the eye), and low-level changes (e.g. the background).


On the left is the training image pair, in the middle are the manipulated primitives and on the right are the manipulated outputs- left to right: dress length, strapless, wrap around the neck.

Single Image Animation

Animation to Video

Video to Animation

Citation

If you find this useful for your research, please use the following.

@InProceedings{Vinker_2021_ICCV,
    author    = {Vinker, Yael and Horwitz, Eliahu and Zabari, Nir and Hoshen, Yedid},
    title     = {Image Shape Manipulation From a Single Augmented Training Sample},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13769-13778}
}

Acknowledgments

Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022