ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Related tags

Deep Learningmcibi
Overview

Introduction

The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into sssegmentation.

Abstract

This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these methods neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.

Framework

img

Performance

COCOStuff-10k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 38.84%/39.68% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.84%/41.49% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/32/150 train/test 41.18%/42.15% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.77%/41.35% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 44.01%/45.23% model | log

ADE20k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.39%/45.95% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 45.66%/47.22% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 46.63%/47.36% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 45.79%/47.34% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 49.73%/50.99% model | log

CityScapes

Model Backbone Crop Size Schedule Train/Eval Set mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 79.90% model | log
DeepLabV3 R-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 82.03% model | log
DeepLabV3 S-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 81.59% model | log
DeepLabV3 HRNetV2p-W48 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 82.55% model | log

LIP

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (flip) Download
DeepLabV3 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.73%/54.08% model | log
DeepLabV3 R-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 55.02%/55.42% model | log
DeepLabV3 S-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.21%/56.34% model | log
DeepLabV3 HRNetV2p-W48 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.40%/56.99% model | log

Citation

If this code is useful for your research, please consider citing:

@article{jin2021mining,
  title={Mining Contextual Information Beyond Image for Semantic Segmentation},
  author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
  journal={arXiv preprint arXiv:2108.11819},
  year={2021}
}
Owner
student
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021