ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Related tags

Deep Learningmcibi
Overview

Introduction

The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into sssegmentation.

Abstract

This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these methods neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.

Framework

img

Performance

COCOStuff-10k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 38.84%/39.68% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.84%/41.49% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/32/150 train/test 41.18%/42.15% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.77%/41.35% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 44.01%/45.23% model | log

ADE20k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.39%/45.95% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 45.66%/47.22% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 46.63%/47.36% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 45.79%/47.34% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 49.73%/50.99% model | log

CityScapes

Model Backbone Crop Size Schedule Train/Eval Set mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 79.90% model | log
DeepLabV3 R-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 82.03% model | log
DeepLabV3 S-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 81.59% model | log
DeepLabV3 HRNetV2p-W48 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 82.55% model | log

LIP

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (flip) Download
DeepLabV3 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.73%/54.08% model | log
DeepLabV3 R-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 55.02%/55.42% model | log
DeepLabV3 S-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.21%/56.34% model | log
DeepLabV3 HRNetV2p-W48 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.40%/56.99% model | log

Citation

If this code is useful for your research, please consider citing:

@article{jin2021mining,
  title={Mining Contextual Information Beyond Image for Semantic Segmentation},
  author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
  journal={arXiv preprint arXiv:2108.11819},
  year={2021}
}
Owner
student
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023