A public available dataset for road boundary detection in aerial images

Overview

Topo-boundary

This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving.

Project page.

Topo-boundary is a publicly available benchmark dataset for topological road-boundary detection in aerial images. With an aerial image as the input, the evaluated method should predict the topological structure of road boundaries in the form of a graph.

This dataset is based on NYC Planimetric Database. Topo-boundary consists of 25,297 4-channel aerial images, and each aerial image has eight labels for different deep-learning tasks. More details about the dataset structure can be found in our paper. Follow the steps in the ./dataset to prepare the dataset.

We also provide the implementation code (including training and inference) based on PyTorch of 9 methods. Go to the Implementation section for details.

Update

  • May/22/2021 Topo_boundary is released. More time is needed to prepare ConvBoundary, DAGMapper and Enhanced-iCurb, thus currently these models are not open-sourced.

Platform information

Hardware info

GPU: one RTX3090 and one GTX1080Ti
CPU: i7-8700K
RAM: 32G
SSD: 256G + 1T

Software info

Ubuntu 18.04
CUDA 11.2
Docker 20.10.1

Make sure you have Docker installed.

File structure

Topo-Boundary
|
├── dataset
|   ├── data_split.json
|   ├── config_dir.yml
|   ├── get_data.bash
|   ├── get_checkpoints.bash
│   ├── cropped_tiff
│   ├── labels
|   ├── pretrain_checkpoints
│   └── scripts
|   
├── docker 
|
├── graph_based_baselines
|   ├── ConvBoundary
|   ├── DAGMApper
|   ├── Enhanced-iCurb
|   ├── iCurb
|   ├── RoadTracer
|   └── VecRoad 
|
├── segmentation_based_baselines
|   ├── DeepRoadMapper
|   ├── OrientationRefine
|   └── naive_baseline
|

Environment and Docker

Docker is used to set up the environment. If you are not familiar with Docker, refer to install Docker and Docker beginner tutorial for more information.

To build the docker image, run:

# go to the directory
cd ./docker
# optional
chmod +x ./build_image.sh
# build the docker image
./build_image.sh

Data and pretrain checkpoints preparation

Follow the steps in ./dataset to prepare the dataset and checkpoints trained by us.

Implementations

We provide the implementation code of 9 methods, including 3 segmentation-based baseline models, 5 graph-based baseline models, and an improved method based on our previous work iCurb. All methods are implemented with PyTorch by ourselves.

Note that the evaluation results of baselines may change after some modifications being made.

Evaluation metrics

We evaluate our implementations by 3 relaxed-pixel-level metrics, the self-defined Entropy Connectivity Metric (ECM), naive connectivity metric (proposed in ConvBoundary) and Average Path Length Similarity (APLS). For more details, refer to the supplementary document.

Related topics

Other research topics about line-shaped object detection could be inspiring to our task. Line-shaped object indicts target objects that have long but thin shapes, and the topology correctness of them also matters a lot. They usually have an irregular shape. E.g., road-network detection, road-lane detection, road-curb detection, line-segment detection, etc. The method to detect one line-shaped object could be adapted to another category without much modification.

To do

  • Acceleration
  • Fix bugs

Contact

For any questions, please send email to zxubg at connect dot ust dot hk.

Citation

@article{xu2021topo,
  title={Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={arXiv preprint arXiv:2103.17119},
  year={2021}
}

@article{xu2021icurb,
  title={iCurb: Imitation Learning-Based Detection of Road Curbs Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={1097--1104},
  year={2021},
  publisher={IEEE}
}
Owner
Zhenhua Xu
HKUST Ph.D. Candidate
Zhenhua Xu
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Xintao 1.4k Dec 25, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022