Package for working with hypernetworks in PyTorch.

Overview

Hypernetworks for PyTorch

This package contains utilities that make it easy to work with hypernetworks in PyTorch.

Installation

You can either install the latest package version via

python3 -m pip install hypnettorch

or, you directly install the current sources

python3 -m pip install git+https://github.com/chrhenning/hypnettorch

Installation for developers

If you actively develop the package, it is easiest to install it in development mode, such that all changes that are done to source files are directly visible when you use the package.

Clone the repository to a location of your choice

git clone https://github.com/chrhenning/hypnettorch.git

and move inside the cloned repo

cd ./hypnettorch

Now, you can simply install the package in editable mode, which will ensure that you can easily update the package sources (cf. development mode)

pip3 install --editable . --user

Since the package was installed in editable mode, you can always update the sources simply by pulling the most recent code

git pull

You can uninstall the package at any point by running python3 setup.py develop -u.

Usage

The basic functionalities of the package are quite intuitive and easy to use, e.g.,

from hypnettorch.mnets import MLP
net = MLP()

There are several tutorials. Check out the getting started tutorial when working with hypnettorch for the first time.

Documentation

The documentation can be found here.

Note for developers

The documentation can be build using

python3 setup.py build_sphinx

and opened via the file index.html.

Citation

When using this package in your research project, please consider citing one of our papers for which this package has been developed.

@inproceedings{oshg2019hypercl,
title={Continual learning with hypernetworks},
author={Johannes von Oswald and Christian Henning and Jo{\~a}o Sacramento and Benjamin F. Grewe},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/abs/1906.00695}
}
@inproceedings{ehret2020recurrenthypercl,
  title={Continual Learning in Recurrent Neural Networks},
  author={Benjamin Ehret and Christian Henning and Maria R. Cervera and Alexander Meulemans and Johannes von Oswald and Benjamin F. Grewe},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://arxiv.org/abs/2006.12109}
}
@inproceedings{posterior:replay:2021:henning:cervera,
title={Posterior Meta-Replay for Continual Learning}, 
      author={Christian Henning and Maria R. Cervera and Francesco D'Angelo and Johannes von Oswald and Regina Traber and Benjamin Ehret and Seijin Kobayashi and João Sacramento and Benjamin F. Grewe},
booktitle={Conference on Neural Information Processing Systems},
year={2021},
url={https://arxiv.org/abs/2103.01133}
}
Owner
Christian Henning
Machine Learning Researcher
Christian Henning
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Matthew Colbrook 1 Apr 08, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022