DeiT: Data-efficient Image Transformers

Related tags

Deep Learningdeit
Overview

DeiT: Data-efficient Image Transformers

This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient Image Transformers).

They obtain competitive tradeoffs in terms of speed / precision:

DeiT

For details see Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles and Hervé Jégou.

If you use this code for a paper please cite:

@article{touvron2020deit,
  title={Training data-efficient image transformers & distillation through attention},
  author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Herv\'e J\'egou},
  journal={arXiv preprint arXiv:2012.12877},
  year={2020}
}

Model Zoo

We provide baseline DeiT models pretrained on ImageNet 2012.

name [email protected] [email protected] #params url
DeiT-tiny 72.2 91.1 5M model
DeiT-small 79.9 95.0 22M model
DeiT-base 81.8 95.6 86M model
DeiT-tiny distilled 74.5 91.9 6M model
DeiT-small distilled 81.2 95.4 22M model
DeiT-base distilled 83.4 96.5 87M model
DeiT-base 384 82.9 96.2 87M model
DeiT-base distilled 384 (1000 epochs) 85.2 97.2 88M model

The models are also available via torch hub. Before using it, make sure you have the pytorch-image-models package timm==0.3.2 by Ross Wightman installed. Note that our work relies of the augmentations proposed in this library. In particular, the RandAugment and RandErasing augmentations that we invoke are the improved versions from the timm library, which already led the timm authors to report up to 79.35% top-1 accuracy with Imagenet training for their best model, i.e., an improvement of about +1.5% compared to prior art.

To load DeiT-base with pretrained weights on ImageNet simply do:

import torch
# check you have the right version of timm
import timm
assert timm.__version__ == "0.3.2"

# now load it with torchhub
model = torch.hub.load('facebookresearch/deit:main', 'deit_base_patch16_224', pretrained=True)

Additionnally, we provide a Colab notebook which goes over the steps needed to perform inference with DeiT.

Usage

First, clone the repository locally:

git clone https://github.com/facebookresearch/deit.git

Then, install PyTorch 1.7.0+ and torchvision 0.8.1+ and pytorch-image-models 0.3.2:

conda install -c pytorch pytorch torchvision
pip install timm==0.3.2

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Evaluation

To evaluate a pre-trained DeiT-base on ImageNet val with a single GPU run:

python main.py --eval --resume https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth --data-path /path/to/imagenet

This should give

* [email protected] 81.846 [email protected] 95.594 loss 0.820

For Deit-small, run:

python main.py --eval --resume https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth --model deit_small_patch16_224 --data-path /path/to/imagenet

giving

* [email protected] 79.854 [email protected] 94.968 loss 0.881

Note that Deit-small is not the same model as in Timm.

And for Deit-tiny:

python main.py --eval --resume https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth --model deit_tiny_patch16_224 --data-path /path/to/imagenet

which should give

* [email protected] 72.202 [email protected] 91.124 loss 1.219

Here you'll find the command-lines to reproduce the inference results for the distilled and finetuned models

deit_base_distilled_patch16_224
python main.py --eval --model deit_base_distilled_patch16_224 --resume https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth

giving

* [email protected] 83.372 [email protected] 96.482 loss 0.685
deit_small_distilled_patch16_224
python main.py --eval --model deit_small_distilled_patch16_224 --resume https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth

giving

* [email protected] 81.164 [email protected] 95.376 loss 0.752
deit_tiny_distilled_patch16_224
python main.py --eval --model deit_tiny_distilled_patch16_224 --resume https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth

giving

* [email protected] 74.476 [email protected] 91.920 loss 1.021
deit_base_patch16_384
python main.py --eval --model deit_base_patch16_384 --input-size 384 --resume https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth

giving

* [email protected] 82.890 [email protected] 96.222 loss 0.764
deit_base_distilled_patch16_384
python main.py --eval --model deit_base_distilled_patch16_384 --input-size 384 --resume https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth

giving

* [email protected] 85.224 [email protected] 97.186 loss 0.636

Training

To train DeiT-small and Deit-tiny on ImageNet on a single node with 4 gpus for 300 epochs run:

DeiT-small

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model deit_small_patch16_224 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

DeiT-tiny

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model deit_tiny_patch16_224 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

Multinode training

Distributed training is available via Slurm and submitit:

pip install submitit

To train DeiT-base model on ImageNet on 2 nodes with 8 gpus each for 300 epochs:

python run_with_submitit.py --model deit_base_patch16_224 --data-path /path/to/imagenet

To train DeiT-base with hard distillation using a RegNetY-160 as teacher, on 2 nodes with 8 GPUs with 32GB each for 300 epochs (make sure that the model weights for the teacher have been downloaded before to the correct location, to avoid multiple workers writing to the same file):

python run_with_submitit.py --model deit_base_distilled_patch16_224 --distillation-type hard --teacher-model regnety_160 --teacher-path https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth --use_volta32

To finetune a DeiT-base on 384 resolution images for 30 epochs, starting from a DeiT-base trained on 224 resolution images, do (make sure that the weights to the original model have been downloaded before, to avoid multiple workers writing to the same file):

python run_with_submitit.py --model deit_base_patch16_384 --batch-size 32 --finetune https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth --input-size 384 --use_volta32 --nodes 2 --lr 5e-6 --weight-decay 1e-8 --epochs 30 --min-lr 5e-6

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Owner
Facebook Research
Facebook Research
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
LIAO Shuiying 6 Dec 01, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022