CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

Related tags

Deep LearningHDRUNet
Overview

HDRUNet [Paper Link]

HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization

By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao and Chao Dong

We won the second place in NTIRE2021 HDR Challenge (Track1: Single Frame). The paper is accepted to CVPR2021 Workshop.

BibTeX

@inproceedings{chen2021hdrunet,
  title={HDRUnet: Single image hdr reconstruction with denoising and dequantization},
  author={Chen, Xiangyu and Liu, Yihao and Zhang, Zhengwen and Qiao, Yu and Dong, Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={354--363},
  year={2021}
}

Overview

Overview of the network:

Overview of the loss function:

Tanh_L1(Y, H) = |Tanh(Y) - Tanh(H)|

Getting Started

  1. Dataset
  2. Configuration
  3. How to test
  4. How to train
  5. Visualization

Dataset

Register a codalab account and log in, then find the download link on this page:

https://competitions.codalab.org/competitions/28161#participate-get-data

It is strongly recommended to use the data provided by the competition organizer for training and testing, or you need at least a basic understanding of the competition data. Otherwise, you may not get the desired result.

Configuration

pip install -r requirements.txt

How to test

  • Modify dataroot_LQ and pretrain_model_G (you can also use the pretrained model which is provided in the ./pretrained_model) in ./codes/options/test/test_HDRUNet.yml, then run
cd codes
python test.py -opt options/test/test_HDRUNet.yml

The test results will be saved to ./results/testset_name.

How to train

  • Prepare the data. Modify input_folder and save_folder in ./scripts/extract_subimgs_single.py, then run
cd scripts
python extract_subimgs_single.py
  • Modify dataroot_LQ and dataroot_GT in ./codes/options/train/train_HDRUNet.yml, then run
cd codes
python train.py -opt options/train/train_HDRUNet.yml

The models and training states will be saved to ./experiments/name.

Visualization

In ./scripts, several scripts are available. data_io.py and metrics.py are provided by the competition organizer for reading/writing data and evaluation. Based on these codes, I provide a script for visualization by using the tone-mapping provided in metrics.py. Modify paths of the data in ./scripts/tonemapped_visualization.py and run

cd scripts
python tonemapped_visualization.py

to visualize the images.

Acknowledgment

The code is inspired by BasicSR.

Owner
XyChen
PhD. Student,Computer Vision
XyChen
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022