CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

Related tags

Deep LearningHDRUNet
Overview

HDRUNet [Paper Link]

HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization

By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao and Chao Dong

We won the second place in NTIRE2021 HDR Challenge (Track1: Single Frame). The paper is accepted to CVPR2021 Workshop.

BibTeX

@inproceedings{chen2021hdrunet,
  title={HDRUnet: Single image hdr reconstruction with denoising and dequantization},
  author={Chen, Xiangyu and Liu, Yihao and Zhang, Zhengwen and Qiao, Yu and Dong, Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={354--363},
  year={2021}
}

Overview

Overview of the network:

Overview of the loss function:

Tanh_L1(Y, H) = |Tanh(Y) - Tanh(H)|

Getting Started

  1. Dataset
  2. Configuration
  3. How to test
  4. How to train
  5. Visualization

Dataset

Register a codalab account and log in, then find the download link on this page:

https://competitions.codalab.org/competitions/28161#participate-get-data

It is strongly recommended to use the data provided by the competition organizer for training and testing, or you need at least a basic understanding of the competition data. Otherwise, you may not get the desired result.

Configuration

pip install -r requirements.txt

How to test

  • Modify dataroot_LQ and pretrain_model_G (you can also use the pretrained model which is provided in the ./pretrained_model) in ./codes/options/test/test_HDRUNet.yml, then run
cd codes
python test.py -opt options/test/test_HDRUNet.yml

The test results will be saved to ./results/testset_name.

How to train

  • Prepare the data. Modify input_folder and save_folder in ./scripts/extract_subimgs_single.py, then run
cd scripts
python extract_subimgs_single.py
  • Modify dataroot_LQ and dataroot_GT in ./codes/options/train/train_HDRUNet.yml, then run
cd codes
python train.py -opt options/train/train_HDRUNet.yml

The models and training states will be saved to ./experiments/name.

Visualization

In ./scripts, several scripts are available. data_io.py and metrics.py are provided by the competition organizer for reading/writing data and evaluation. Based on these codes, I provide a script for visualization by using the tone-mapping provided in metrics.py. Modify paths of the data in ./scripts/tonemapped_visualization.py and run

cd scripts
python tonemapped_visualization.py

to visualize the images.

Acknowledgment

The code is inspired by BasicSR.

Owner
XyChen
PhD. Student,Computer Vision
XyChen
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022