This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Overview

Reinforcement-trading

This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore and one of the best human i know Ryan Booth https://github.com/ryanabooth.

One Point to note, the code inside tensor-reinforcement is the latest code and you should be reading/running if you are interested in project. Leave other directories, I am not working on them for now
. To read my thought journal during ongoing development https://github.com/deependersingla/deep_trader/blob/master/deep_thoughts.md

Before this I have used RL here: http://somedeepthoughtsblog.tumblr.com/post/134793589864/maths-versus-computation

Now I run a company on RL trading, so I can't answer questions related to the project.

Steps to reproduce DQN

a) cd tensor-reinforcement
b) Copy data from https://drive.google.com/file/d/0B6ZrYxEMNGR-MEd5Ti0tTEJjMTQ/view and https://drive.google.com/file/d/0B6ZrYxEMNGR-Q0YwWWVpVnJ3YmM/view?usp=sharing into tensor-reinforcement directory.
b) Create a directory saved_networks inside tensor_reinforcement for saving networks.
c) python dqn_model.py

Steps to reproduce PG

a) cd tensor-reinforcement
b) Create a directory saved_networks inside tensor_reinforcement for saving networks.
c) python pg_model.py

For the first iteration of the project

Process:
Intially I started by using Chainer for the project for both supervised and reinforcement learning. In middle of it AlphaGo (https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html) came because of it I shifted to read Sutton book on RL (https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html), AlphaGo and related papers, David Silver lectures (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html, they are great).

I am coming back to project after some time a lot has changed. All the cool kids even DeepMind (the gods) have started using TensorFlow. Hence, I am ditching Chainer and will use Tensorflow from now. Exciting times ahead.

Policy network

I will be starting with simple feed-forward network. Though, I am also inclined to use convolutional network reason, they do very well when the minor change in input should not change ouput. For example: In image recognizition, a small pixel values change doesn't meam image is changed. Intutively stocks numbers look same to me, a small change should not trigger a trade but again the problem here comes with normalization. With normalization the big change in number will be reduced to a very small in inputs hence its good to start with feed-forward.

Feed-forward

I want to start with 2 layer first, yes that just vanilla but lets see how it works than will shift to more deeper network. On output side I will be using a sigmoid non-linear function to get value out of 0 and 1. In hidden layer all neurons will be RELU. With 2 layers, I am assuming that first layer w1 can decide whether market is bullish, bearish and stable. 2nd layer can then decide what action to take based on based layer.

Training

I will run x episode of training and each will have y time interval on it. Policy network will have to make x*y times decision of whether to hold, buy or short. After this based on our reward I will label every decison whether it was good/bad and update network. I will again run x episode on the improved network and will keep doing it. Like MCTS where things average out to optimality our policy also will start making more positive decision and less negative decision even though in training we will see policy making some wrong choices but on average it will work out because we will do same thing million times.

Episodic

I plan to start with episodic training rather than continous training. The major reason for this is that I will not have to calculate reward after every action which agent will make which is complex to do in trading, I can just make terminal reward based on portfolio value after an entire episode (final value of portfolio - transaction cost occur inside the episode - initial value of portfolio). The other reason for doing it that I believe it will motivate agent to learn trading on episodes, which decreases risk of any outlier events or sentiment change in market.

This also means that I have to check the hypothesis on:
a) Episodes of different length
b) On different rewards terminal reward or rewards after each step inside an episode also.
As usual like every AI projects, there will be a lot of hit and trial. I should better write good code and store all results properly so that I can compare them to see what works and what don't. Ofcourse the idea is to make sure agent remain profitable while trading.

More info here https://docs.google.com/document/d/12TmodyT4vZBViEbWXkUIgRW_qmL1rTW00GxSMqYGNHU/edit

Data sources

  1. For directly running this repo, use this data source and you are all setup: https://drive.google.com/open?id=0B6ZrYxEMNGR-MEd5Ti0tTEJjMTQ
  2. Nifty Data: https://drive.google.com/folderview?id=0B8e3dtbFwQWUZ1I5dklCMmE5M2M&ddrp=1%20%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A09:05%20PM%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0
  3. Nifty futures:http://www.4shared.com/folder/Fv9Jm0bS/NSE_Futures
  4. Google finance
  5. Interative Brokers, I used IB because I have an account with them.

For reading on getting data using IB https://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm https://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm symbol: stock -> STK, Indices -> IND

Reinforcement learning resources

https://github.com/aikorea/awesome-rl , this is enough if you are serious

Owner
Deepender Singla
Works at @niveshi. Before @accredible. Simple and nice guy.
Deepender Singla
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022