ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Overview

Robust Place Recognition using an Imaging Lidar

A place recognition package using high-resolution imaging lidar. For best performance, a lidar equipped with more than 64 uniformly distributed channels is strongly recommended, i.e., Ouster OS1-128 lidar.

drawing


Dependency

  • ROS
  • DBoW3
    cd ~/Downloads/
    git clone https://github.com/rmsalinas/DBow3.git
    cd ~/Downloads/DBow3/
    mkdir build && cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    sudo make install
    

Install Package

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/imaging_lidar_place_recognition.git
cd ..
catkin_make

Notes

Download

The three datasets used in the paper can be downloaded from from Google Drive. The lidar used for data-gathering is Ouster OS1-128.

https://drive.google.com/drive/folders/1G1kE8oYGKj7EMdjx7muGucXkt78cfKKU?usp=sharing

Point Cloud Format

The author defined a customized point cloud format, PointOuster, in parameters.h. The customized point cloud is projected onto various images in image_handler.h. If you are using your own dataset, please modify these two files to accommodate data format changes.

Visualization logic

In the current implementation, the package subscribes to a path message that is published by a SLAM framework, i.e., LIO-SAM. When a new point cloud arrives, the package associates the point cloud with the latest pose in the path. If a match is detected between two point clouds, an edge marker is plotted between these two poses. The reason why it's implemented in this way is that SLAM methods usually suffer from drift. If a loop-closure is performed, the associated pose of a point cloud also needs to be updated. Thus, this visualization logic can update point clouds using the updated path rather than using TF or odometry that cannot be updated later.

Image Crop

It's recommended to set the image_crop parameter in params.yaml to be 196-256 when testing the indoor and handheld datasets. This is because the operator is right behind the lidar during the data-gathering process. Using features extracted from the operator body may cause unreliable matching. This parameter should be set to 0 when testing the Jackal dataset, which improves the reverse visiting detection performance.


Test Package

  1. Run the launch file:
roslaunch imaging_lidar_place_recognition run.launch
  1. Play existing bag files:
rosbag play indoor_registered.bag -r 3

Paper

Thank you for citing our paper if you use any of this code or datasets.

@inproceedings{robust2021shan,
  title={Robust Place Recognition using an Imaging Lidar},
  author={Shan, Tixiao and Englot, Brendan and Duarte, Fabio and Ratti, Carlo and Rus Daniela},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  pages={to-be-added},
  year={2021},
  organization={IEEE}
}

Acknowledgement

  • The point clouds in the provided datasets are registered using LIO-SAM.
  • The package is heavily adapted from Vins-Mono.
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021