ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Overview

Robust Place Recognition using an Imaging Lidar

A place recognition package using high-resolution imaging lidar. For best performance, a lidar equipped with more than 64 uniformly distributed channels is strongly recommended, i.e., Ouster OS1-128 lidar.

drawing


Dependency

  • ROS
  • DBoW3
    cd ~/Downloads/
    git clone https://github.com/rmsalinas/DBow3.git
    cd ~/Downloads/DBow3/
    mkdir build && cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    sudo make install
    

Install Package

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/imaging_lidar_place_recognition.git
cd ..
catkin_make

Notes

Download

The three datasets used in the paper can be downloaded from from Google Drive. The lidar used for data-gathering is Ouster OS1-128.

https://drive.google.com/drive/folders/1G1kE8oYGKj7EMdjx7muGucXkt78cfKKU?usp=sharing

Point Cloud Format

The author defined a customized point cloud format, PointOuster, in parameters.h. The customized point cloud is projected onto various images in image_handler.h. If you are using your own dataset, please modify these two files to accommodate data format changes.

Visualization logic

In the current implementation, the package subscribes to a path message that is published by a SLAM framework, i.e., LIO-SAM. When a new point cloud arrives, the package associates the point cloud with the latest pose in the path. If a match is detected between two point clouds, an edge marker is plotted between these two poses. The reason why it's implemented in this way is that SLAM methods usually suffer from drift. If a loop-closure is performed, the associated pose of a point cloud also needs to be updated. Thus, this visualization logic can update point clouds using the updated path rather than using TF or odometry that cannot be updated later.

Image Crop

It's recommended to set the image_crop parameter in params.yaml to be 196-256 when testing the indoor and handheld datasets. This is because the operator is right behind the lidar during the data-gathering process. Using features extracted from the operator body may cause unreliable matching. This parameter should be set to 0 when testing the Jackal dataset, which improves the reverse visiting detection performance.


Test Package

  1. Run the launch file:
roslaunch imaging_lidar_place_recognition run.launch
  1. Play existing bag files:
rosbag play indoor_registered.bag -r 3

Paper

Thank you for citing our paper if you use any of this code or datasets.

@inproceedings{robust2021shan,
  title={Robust Place Recognition using an Imaging Lidar},
  author={Shan, Tixiao and Englot, Brendan and Duarte, Fabio and Ratti, Carlo and Rus Daniela},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  pages={to-be-added},
  year={2021},
  organization={IEEE}
}

Acknowledgement

  • The point clouds in the provided datasets are registered using LIO-SAM.
  • The package is heavily adapted from Vins-Mono.
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022