Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Overview

Self-Supervised Policy Adaptation during Deployment

PyTorch implementation of PAD and evaluation benchmarks from

Self-Supervised Policy Adaptation during Deployment

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang

[Paper] [Website]

samples

Citation

If you find our work useful in your research, please consider citing the paper as follows:

@article{hansen2020deployment,
  title={Self-Supervised Policy Adaptation during Deployment},
  author={Nicklas Hansen and Rishabh Jangir and Yu Sun and Guillem Alenyà and Pieter Abbeel and Alexei A. Efros and Lerrel Pinto and Xiaolong Wang},
  year={2020},
  eprint={2007.04309},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}

Setup

We assume that you have access to a GPU with CUDA >=9.2 support. All dependencies can then be installed with the following commands:

conda env create -f setup/conda.yml
conda activate pad
sh setup/install_envs.sh

Training & Evaluation

We have prepared training and evaluation scripts that can be run by sh scripts/train.sh and sh scripts/eval.sh. Alternatively, you can call the python scripts directly, e.g. for training call

CUDA_VISIBLE_DEVICES=0 python3 src/train.py \
    --domain_name cartpole \
    --task_name swingup \
    --action_repeat 8 \
    --mode train \
    --use_inv \
    --num_shared_layers 8 \
    --seed 0 \
    --work_dir logs/cartpole_swingup/inv/0 \
    --save_model

which should give you an output of the form

| train | E: 1 | S: 1000 | D: 0.8 s | R: 0.0000 | BR: 0.0000 | 
  ALOSS: 0.0000 | CLOSS: 0.0000 | RLOSS: 0.0000

We provide a pre-trained model that can be used for evaluation. To run Policy Adaptation during Deployment, call

CUDA_VISIBLE_DEVICES=0 python3 src/eval.py \
    --domain_name cartpole \
    --task_name swingup \
    --action_repeat 8 \
    --mode color_hard \
    --use_inv \
    --num_shared_layers 8 \
    --seed 0 \
    --work_dir logs/cartpole_swingup/inv/0 \
    --pad_checkpoint 500k

which should give you an output of the form

Evaluating logs/cartpole_swingup/inv/0 for 100 episodes (mode: color_hard)
eval reward: 666

Policy Adaptation during Deployment of logs/cartpole_swingup/inv/0 for 100 episodes (mode: color_hard)
pad reward: 722

Here's a few samples from the training and test environments of our benchmark:

samples

Please refer to the project page and paper for results and experimental details.

Acknowledgements

We want to thank the numerous researchers and engineers involved in work of which this implementation is based on. Our SAC implementation is based on this repository, the original DeepMind Control suite is available here and the gym wrapper for it is available here. Go check them out!

Owner
Nicklas Hansen
PhD student @ UC San Diego. Previously: UC Berkeley, DTU, NTUsg. Working on machine learning, robotics, and computer vision.
Nicklas Hansen
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022