Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Overview

Self-Supervised Policy Adaptation during Deployment

PyTorch implementation of PAD and evaluation benchmarks from

Self-Supervised Policy Adaptation during Deployment

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang

[Paper] [Website]

samples

Citation

If you find our work useful in your research, please consider citing the paper as follows:

@article{hansen2020deployment,
  title={Self-Supervised Policy Adaptation during Deployment},
  author={Nicklas Hansen and Rishabh Jangir and Yu Sun and Guillem Alenyà and Pieter Abbeel and Alexei A. Efros and Lerrel Pinto and Xiaolong Wang},
  year={2020},
  eprint={2007.04309},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}

Setup

We assume that you have access to a GPU with CUDA >=9.2 support. All dependencies can then be installed with the following commands:

conda env create -f setup/conda.yml
conda activate pad
sh setup/install_envs.sh

Training & Evaluation

We have prepared training and evaluation scripts that can be run by sh scripts/train.sh and sh scripts/eval.sh. Alternatively, you can call the python scripts directly, e.g. for training call

CUDA_VISIBLE_DEVICES=0 python3 src/train.py \
    --domain_name cartpole \
    --task_name swingup \
    --action_repeat 8 \
    --mode train \
    --use_inv \
    --num_shared_layers 8 \
    --seed 0 \
    --work_dir logs/cartpole_swingup/inv/0 \
    --save_model

which should give you an output of the form

| train | E: 1 | S: 1000 | D: 0.8 s | R: 0.0000 | BR: 0.0000 | 
  ALOSS: 0.0000 | CLOSS: 0.0000 | RLOSS: 0.0000

We provide a pre-trained model that can be used for evaluation. To run Policy Adaptation during Deployment, call

CUDA_VISIBLE_DEVICES=0 python3 src/eval.py \
    --domain_name cartpole \
    --task_name swingup \
    --action_repeat 8 \
    --mode color_hard \
    --use_inv \
    --num_shared_layers 8 \
    --seed 0 \
    --work_dir logs/cartpole_swingup/inv/0 \
    --pad_checkpoint 500k

which should give you an output of the form

Evaluating logs/cartpole_swingup/inv/0 for 100 episodes (mode: color_hard)
eval reward: 666

Policy Adaptation during Deployment of logs/cartpole_swingup/inv/0 for 100 episodes (mode: color_hard)
pad reward: 722

Here's a few samples from the training and test environments of our benchmark:

samples

Please refer to the project page and paper for results and experimental details.

Acknowledgements

We want to thank the numerous researchers and engineers involved in work of which this implementation is based on. Our SAC implementation is based on this repository, the original DeepMind Control suite is available here and the gym wrapper for it is available here. Go check them out!

Owner
Nicklas Hansen
PhD student @ UC San Diego. Previously: UC Berkeley, DTU, NTUsg. Working on machine learning, robotics, and computer vision.
Nicklas Hansen
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023