Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Overview

Ponder(ing) Transformer

Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of the input sequence, using the scheme from the PonderNet paper. Will also try to abstract out a pondering module that can be used with any block that returns an output with the halting probability.

This repository would not have been possible without repeated viewings of Yannic's educational video

Install

$ pip install ponder-transformer

Usage

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512
)

mask = torch.ones(1, 512).bool()

x = torch.randint(0, 20000, (1, 512))
y = torch.randint(0, 20000, (1, 512))

loss = model(x, labels = y, mask = mask)
loss.backward()

Now you can set the model to .eval() mode and it will terminate early when all samples of the batch have emitted a halting signal

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512,
    causal = True
)

x = torch.randint(0, 20000, (2, 512))
mask = torch.ones(2, 512).bool()

model.eval() # setting to eval makes it return the logits as well as the halting indices

logits, layer_indices = model(x,  mask = mask) # (2, 512, 20000), (2)

# layer indices will contain, for each batch element, which layer they exited

Citations

@misc{banino2021pondernet,
    title   = {PonderNet: Learning to Ponder}, 
    author  = {Andrea Banino and Jan Balaguer and Charles Blundell},
    year    = {2021},
    eprint  = {2107.05407},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
Implementation of the Transformer variant proposed in
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

Comments
  • Evaluating ponder-net on more pondering-steps than trained on.

    Evaluating ponder-net on more pondering-steps than trained on.

    As the paper says,

    In evaluation, and under known temporal or computational limitations, N can be set naively as a constant (or not set any limit, i.e. N → ∞). For training, we found that a more effective (and interpretable) way of parameterizing N is by defining a minimum cumulative probability of halting. N is then the smallest value of n such that sum( p_sub_ j > 1 − ε)over(j=1, n) , with the hyper-parameter ε positive near 0 (in our experiments 0.05).

    from that I infer that pondering can be done to more steps than trained on. How can be done so with this implementation?

    edit: I was going through the paper again,and I think what the paper means is that the max_num_pondering_steps:N should be re evaluated at every training-step, the model should be run till the condition is met or a pre-defined num of max steps is reached, and where the cumsum_probs condition will be met will be set as 'N', with the cumsum_probs normalised with one of the methods. Then that value of 'N' will be used to calc prior geom for the kl_div (and not normalising the prior geom term).

    i.e. if the num of pondering steps are initially set to 'M', then the model will recur for 'k' steps - i.e. till the condition is met or for 'M' num of max steps; then 'N' will be calculated by first calculating the probabilities - p_0 to p_k - then normalizing through one of the methods, then calculate cumulative-sum of those probabilities, and checking where the sum is greater than threshold, and assigning it the value 'N'. After that, calculating prior geometric values with the defined hyper-parameter, for 'N' seq-len, and using this in the kl-div term against the halting probs truncated to 'N' steps.

    λp is a hyper-parameter that defines a geometric prior distribution pG(λp) on the halting policy (truncated at N)

    opened by Vbansal21 0
  • Can pondernet used for imagenet?

    Can pondernet used for imagenet?

    I plan to do a project on the complexity of tasks on image dataset like imagenet, cifar 100. If I use a vision transformer, then can I implement my project?

    opened by fryegg 2
Releases(0.0.8)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022