CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

Overview

CSWin-Transformer

PWC PWC

This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". The code and models for downstream tasks are coming soon.

Introduction

CSWin Transformer (the name CSWin stands for Cross-Shaped Window) is introduced in arxiv, which is a new general-purpose backbone for computer vision. It is a hierarchical Transformer and replaces the traditional full attention with our newly proposed cross-shaped window self-attention. The cross-shaped window self-attention mechanism computes self-attention in the horizontal and vertical stripes in parallel that from a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. With CSWin, we could realize global attention with a limited computation cost.

CSWin Transformer achieves strong performance on ImageNet classification (87.5 on val with only 97G flops) and ADE20K semantic segmentation (55.7 mIoU on val), surpassing previous models by a large margin.

teaser

Main Results on ImageNet

model pretrain resolution [email protected] #params FLOPs 22K model 1K model
CSWin-T ImageNet-1K 224x224 82.8 23M 4.3G - model
CSWin-S ImageNet-1k 224x224 83.6 35M 6.9G - model
CSWin-B ImageNet-1k 224x224 84.2 78M 15.0G - model
CSWin-B ImageNet-1k 384x384 85.5 78M 47.0G - model
CSWin-L ImageNet-22k 224x224 86.5 173M 31.5G model model
CSWin-L ImageNet-22k 384x384 87.5 173M 96.8G - model

Main Results on Downstream Tasks

COCO Object Detection

backbone Method pretrain lr Schd box mAP mask mAP #params FLOPS
CSwin-T Mask R-CNN ImageNet-1K 3x 49.0 43.6 42M 279G
CSwin-S Mask R-CNN ImageNet-1K 3x 50.0 44.5 54M 342G
CSwin-B Mask R-CNN ImageNet-1K 3x 50.8 44.9 97M 526G
CSwin-T Cascade Mask R-CNN ImageNet-1K 3x 52.5 45.3 80M 757G
CSwin-S Cascade Mask R-CNN ImageNet-1K 3x 53.7 46.4 92M 820G
CSwin-B Cascade Mask R-CNN ImageNet-1K 3x 53.9 46.4 135M 1004G

ADE20K Semantic Segmentation (val)

Backbone Method pretrain Crop Size Lr Schd mIoU mIoU (ms+flip) #params FLOPs
CSwin-T Semantic FPN ImageNet-1K 512x512 80K 48.2 - 26M 202G
CSwin-S Semantic FPN ImageNet-1K 512x512 80K 49.2 - 39M 271G
CSwin-B Semantic FPN ImageNet-1K 512x512 80K 49.9 - 81M 464G
CSwin-T UPerNet ImageNet-1K 512x512 160K 49.3 50.4 60M 959G
CSwin-S UperNet ImageNet-1K 512x512 160K 50.0 50.8 65M 1027G
CSwin-B UperNet ImageNet-1K 512x512 160K 50.8 51.7 109M 1222G
CSwin-B UPerNet ImageNet-22K 640x640 160K 51.8 52.6 109M 1941G
CSwin-L UperNet ImageNet-22K 640x640 160K 53.4 55.7 208M 2745G

Requirements

timm==0.3.4, pytorch>=1.4, opencv, ... , run:

bash install_req.sh

Apex for mixed precision training is used for finetuning. To install apex, run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Train

Train the three lite variants: CSWin-Tiny, CSWin-Small and CSWin-Base:

bash train.sh 8 --data <data path> --model CSWin_64_12211_tiny_224 -b 256 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.2
bash train.sh 8 --data <data path> --model CSWin_64_24322_small_224 -b 256 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.4
bash train.sh 8 --data <data path> --model CSWin_96_24322_base_224 -b 128 --lr 1e-3 --weight-decay .1 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99992 --drop-path 0.5

If you want to train our CSWin on images with 384x384 resolution, please use '--img-size 384'.

If the GPU memory is not enough, please use '-b 128 --lr 1e-3 --model-ema-decay 0.99992' or use checkpoint '--use-chk'.

Finetune

Finetune CSWin-Base with 384x384 resolution:

bash finetune.sh 8 --data <data path> --model CSWin_96_24322_base_384 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 384 --warmup-epochs 0 --model-ema-decay 0.9998 --finetune <pretrained 224 model> --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1

Finetune ImageNet-22K pretrained CSWin-Large with 224x224 resolution:

bash finetune.sh 8 --data <data path> --model CSWin_144_24322_large_224 -b 64 --lr 2.5e-4 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9996 --finetune <22k-pretrained model> --epochs 30 --mixup 0.01 --cooldown-epochs 10 --interpolation bicubic  --lr-scale 0.05 --drop-path 0.2 --cutmix 0.3 --use-chk --fine-22k --ema-finetune

If the GPU memory is not enough, please use checkpoint '--use-chk'.

Cite CSWin Transformer

@misc{dong2021cswin,
      title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
        author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
        year={2021},
        eprint={2107.00652},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
}

Acknowledgement

This repository is built using the timm library and the DeiT repository.

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using CSWin Transformer, please submit a GitHub issue.

For other communications related to CSWin Transformer, please contact Jianmin Bao ([email protected]), Dong Chen ([email protected]).

Comments
  • About the patches_resolution of the segmentation model

    About the patches_resolution of the segmentation model

    Hello, this work is interesting but I have some questions about the 'patches_resolution' of the segmentation model. I notice that the long side of the cross-shaped windows is the 'patches_resolution' rather than the real feature resoulution. For example, in the stage-3, the long side is 224 / 16 = 14. Do I understand it correctly? Does that make it impossible to exchannge information outside the 'patches_resolution' ?

    opened by danczs 2
  • The results of downstream task by my realization are poor

    The results of downstream task by my realization are poor

    There are some questions:

    1. the split size is still [1 2 7 7]?
    2. last stage branch_num is 2 or 1 ? The downstream task image resolution in last stages cannot equal to 7(split size). If not 1, the pretrained weights size is not matched
    3. pading is right in my realization ? pad_l = pad_t = 0 pad_r = (W_sp - W % W_sp) % W_sp pad_b = (H_sp - H % H_sp) % H_sp q = q.transpose(-2,-1).contiguous().view(B, H, W, C) k = q.transpose(-2,-1).contiguous().view(B, H, W, C) v = q.transpose(-2,-1).contiguous().view(B, H, W, C) if pad_r > 0 or pad_b > 0: q = F.pad(q, (0, 0, pad_l, pad_r, pad_t, pad_b)) k = F.pad(k, (0, 0, pad_l, pad_r, pad_t, pad_b)) v = F.pad(v, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = q.shape
    opened by Sunting78 2
  • Experiment setting for semantic segmentation

    Experiment setting for semantic segmentation

    Hi, thank you for the code. I implemented CSwin-T with FPN for semantic segmentation in ADE20K but couldn't reach the mIoU value of 48.2 as mentioned by you in the table. The maximum I could get was 39.9 mIoU, it will be great if you could share the exact experiment settings you used? Thanks

    opened by AnukritiSinghh 2
  • CSWin significantly slower than Swin?

    CSWin significantly slower than Swin?

    Greetings,

    From my benchmarks I have noticed that CSwin seems to be significantly slower than Swin when it comes to inference times, is this the expected behavior? While I can get predictions as fast as 20 miliseconds on Swin Large 384 it takes above 900 milisecond on CSWin_144_24322_large_384.

    I performed tests using FP16, torchscript, optimize_for_inference and torch.inference_mode

    opened by ErenBalatkan 2
  • Pretrained settings for object detection

    Pretrained settings for object detection

    Hi, I'm impressed by your excellent work.

    I have a question.

    I wonder which type of the pre-trained weights (224x224 or 384x384 finetuned) is used for object detection.

    I know both 224x224 and 384x384 are pre-trained on ImageNet-1k.

    opened by youngwanLEE 2
  • Error about building 384 models

    Error about building 384 models

    The code: https://github.com/microsoft/CSWin-Transformer/blob/d8be74a7833898f7bd9c77eb8c051d1b8bd5d753/models/cswin.py#L407 shoud be:

    model = CSWinTransformer(img_size=384, patch_size=4, embed_dim=96, depth=[2,4,32,2],
    

    And as the same: https://github.com/microsoft/CSWin-Transformer/blob/d8be74a7833898f7bd9c77eb8c051d1b8bd5d753/models/cswin.py#L414

    opened by TingquanGao 2
  • The problem is shown in the figure

    The problem is shown in the figure

    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2], split_size=[1,2,12,12], num_heads=[4,8,16,32], mlp_ratio=4.).cuda().eval() inp = torch.rand(1, 3, 224, 224).cuda() outs = model(inp) for out in outs: print(out.shape)

    RuntimeError: shape '[1, 192, 1, 14, 1, 12]' is invalid for input of size 37632

    why? image

    opened by rui-cf 2
  • about the test result on imagenet-2012

    about the test result on imagenet-2012

    Hi! I've test the CSwin-Tiny-224 released pretrained weight, this is my data transforms during testing:

    DEFAULT_CROP_SIZE = 0.9
    scale_size = int(math.floor(image_size / DEFAULT_CROP_SIZE))
    transform = transforms.Compose(
            [
                transforms.Resize(scale_size, interpolation=3)  # 3: bibubic
                if image_size == 224
                else transforms.Resize(image_size, interpolation=3),
                transforms.CenterCrop(image_size),
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
            ]
        )
    

    I can only get 80.5% on imagenet2012 dataset which is inconsistent with the results as you mentioned in this repo, did I miss some details about the data-augmentation during testing?

    opened by rentainhe 1
  • CSwin Code for Segmentation with MMSegmentation

    CSwin Code for Segmentation with MMSegmentation

    Hi, Thank you for your work! I wonder if you plan to release the mmsegmentation code you used for the downstream segmentation task, just like in Swin-Transformer repo.

    Best,

    opened by WalBouss 1
  • How do you produce Table 9  (ablation on different attention mecahnisms) in the  paper?

    How do you produce Table 9 (ablation on different attention mecahnisms) in the paper?

    Hi, thanks for your nice work. I'm doing some comparison on different attention mechanisms, and want to follow your experimental settings. I meet two problems:

    1. Why the reported mIoU is 41.9 for Swin-T in Table 9, while it is 46.1 in Swin Paper?
    2. Can you provide detailed experimental settings for semantic segmentation and object detection in table 9 ?
    opened by rayleizhu 0
  • about the setting of --use_chk

    about the setting of --use_chk

    give the parameter of --use_chk can launch the torch.utils.checkpoint to save the GPU memory, and I wonder if this could hurt the final performance, thanks a lot!

    opened by go-ahead-maker 0
  • Input image normalization parameters for semantic segmentation.

    Input image normalization parameters for semantic segmentation.

    Hey, guys, cool work!

    Unfortunately, for me it is not quite obvious, which normalization parameters (mean, std) did you use, when trained semantic segmentation model on ADE20K. Are they still IMAGENET_DEFAULT_MEAN or you used another values?

    opened by NikAleksFed 0
  • Using transfer to train over food101

    Using transfer to train over food101

    Hi all! I'm trying to train a model for food101 using the using the CSWin_64_12211_tiny_224 model with its pretrained values. The thing is, during execution it looks like its training from 0 rather than reusing the pretrained weights. By this I mean the initial top5 accuracy is around 5% but my initial thoughts is that it should be higher than this.

    For this I loaded the pretrained model and changed it's classification layer in a separate script and saved it for use as follows

    model = create_model( 'CSWin_64_12211_tiny_224', pretrained=True, num_classes=1000, drop_rate=0.0, drop_connect_rate=None, # DEPRECATED, use drop_path drop_path_rate=0.2, drop_block_rate=None, global_pool=None, bn_tf=False, bn_momentum=None, bn_eps=None, checkpoint_path='', img_size=224, use_chk=True) chk_path = './pretrained/cswin_tiny_224.pth' load_checkpoint(model, chk_path) model.reset_classifier(101, 'max')

    These are some of the runs I tried ` bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1 --use-chk --num-classes 101 --pretrained --finetune ./pretrained/CSWin_64_12211_tiny_224101.pth

    bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --cooldown-epochs 10 --drop-path 0.2 --ema-finetune --cutmix 0.1 --use-chk --num-classes 101 --initial-checkpoint ./pretrained/CSWin_64_12211_tiny_224101.pth --lr-scale 1.0 --output ./full_base `

    Is there something I'm missing or a proper way I should try this?

    Thanks in advance for any help! :)

    opened by andreynz691 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022