This is an example of a reproducible modelling project

Overview

An example of a reproducible modelling project

What are we doing?

This example was created for the 2021 fall lecture series of Stanford's Center for Open and REproducible Science (CORES).

A video of the talk can be found at: https://youtu.be/JAQot6b1Cng

The goal of this exemplary analysis is to explore the effect of varying different hyper-parameters of the training of a simple classification model on its performance in scikit-learn's handwritten digit dataset.

Specifically, we will study the effect of varying the learning rate, regularisation strength, number of gradient descent steps, and random shuffling of the data on the 3-fold cross-validation performance of scikit-learn's linear support vector machine classifier.

Importantly, each hyper-parameter is varied separately while all other hyper-parameters are set to default values (for details, see scripts/evaluate_hyper_params_effect.py).

Project organization

├── LICENSE            <- MIT License
├── Makefile           <- Makefile with targets to 'load', 'evaluate', and 'plot' ('make all' runs all three analysis steps)
├── poetry.lock        <- Details of used package versions
├── pyproject.toml     <- Lists all dependencies
├── README.md          <- This README file.
├── docs/              
|    └──               <- Slides of the practical tutorial
├── data/
|    └──               <- A copy of the handwritten digit dataset provided by scikit-learn
|
├── results/
|    ├── estimates/
|    │    └──          <- Generated estimates of classifier performance
|    └── figures/
|         └──          <- Generated figures
|
├── scrips/
|    ├── load_data.py                       <- Downloads the dataset to specified 'data-path'
|    ├── evaluate_hyper_params_effect.py    <- Runs cross-validated hyper-parameter evaluation
|    ├── plot_hyper_params_effect.py        <- Summarizes results of evaluation in a figure
|    └── run_analysis.sh                    <- Runs all analysis steps
|
└── src/
    ├── hyper/
    │    ├──  __init__.py                   <- Makes 'hyper' a Python module
    │    ├── grid.py                        <- Functionality to sample hyper-parameter grid
    │    ├── evaluation.py                  <- Functionality to evaluate classifier performance, given hyper-parameters
    │    └── plotting.py                    <- Functionality to visualize results
    └── setup.py                            <- Makes 'hyper' pip-installable (pip install -e .)  

Data description

We use the handwritten digits dataset provided by scikit-learn. For details on this dataset, see scikit-learn's documentation:

https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset

Installation

This project is written for Python 3.9.5 (we recommend pyenv for Python version management).

All software dependencies of this project are managed with Python Poetry. All details about the used package versions are provided in pyproject.toml.

To clone this repository to your local machine, run:

git clone https://github.com/athms/reproducible-modelling

To install all dependencies with poetry, run:

cd reproducible-modelling/
poetry install

To reproduce our analyses, you additionally need to install our custom Python module (src/hyper) in your poetry environment:

cd src/
poetry run pip install -e .

Reproducing our analysis

Our analysis can be reproduced either by running scripts/run_analysis.sh:

cd scripts
poetry run bash run_analysis.sh

..or by the use of make:

poetry run make <ANALYSIS TARGET>

We provide the following targets for make:

Analysis target Description
all Runs the entire analysis pipeline
load Downloads scikit-learn's handwritten digit dataset
evaluate Runs our cross-validated hyper-parameter evaluation
plot Creates our results figure

This README file is strongly inspired by the Cookiecutter Data Science Structure

Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022