This is an example of a reproducible modelling project

Overview

An example of a reproducible modelling project

What are we doing?

This example was created for the 2021 fall lecture series of Stanford's Center for Open and REproducible Science (CORES).

A video of the talk can be found at: https://youtu.be/JAQot6b1Cng

The goal of this exemplary analysis is to explore the effect of varying different hyper-parameters of the training of a simple classification model on its performance in scikit-learn's handwritten digit dataset.

Specifically, we will study the effect of varying the learning rate, regularisation strength, number of gradient descent steps, and random shuffling of the data on the 3-fold cross-validation performance of scikit-learn's linear support vector machine classifier.

Importantly, each hyper-parameter is varied separately while all other hyper-parameters are set to default values (for details, see scripts/evaluate_hyper_params_effect.py).

Project organization

├── LICENSE            <- MIT License
├── Makefile           <- Makefile with targets to 'load', 'evaluate', and 'plot' ('make all' runs all three analysis steps)
├── poetry.lock        <- Details of used package versions
├── pyproject.toml     <- Lists all dependencies
├── README.md          <- This README file.
├── docs/              
|    └──               <- Slides of the practical tutorial
├── data/
|    └──               <- A copy of the handwritten digit dataset provided by scikit-learn
|
├── results/
|    ├── estimates/
|    │    └──          <- Generated estimates of classifier performance
|    └── figures/
|         └──          <- Generated figures
|
├── scrips/
|    ├── load_data.py                       <- Downloads the dataset to specified 'data-path'
|    ├── evaluate_hyper_params_effect.py    <- Runs cross-validated hyper-parameter evaluation
|    ├── plot_hyper_params_effect.py        <- Summarizes results of evaluation in a figure
|    └── run_analysis.sh                    <- Runs all analysis steps
|
└── src/
    ├── hyper/
    │    ├──  __init__.py                   <- Makes 'hyper' a Python module
    │    ├── grid.py                        <- Functionality to sample hyper-parameter grid
    │    ├── evaluation.py                  <- Functionality to evaluate classifier performance, given hyper-parameters
    │    └── plotting.py                    <- Functionality to visualize results
    └── setup.py                            <- Makes 'hyper' pip-installable (pip install -e .)  

Data description

We use the handwritten digits dataset provided by scikit-learn. For details on this dataset, see scikit-learn's documentation:

https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset

Installation

This project is written for Python 3.9.5 (we recommend pyenv for Python version management).

All software dependencies of this project are managed with Python Poetry. All details about the used package versions are provided in pyproject.toml.

To clone this repository to your local machine, run:

git clone https://github.com/athms/reproducible-modelling

To install all dependencies with poetry, run:

cd reproducible-modelling/
poetry install

To reproduce our analyses, you additionally need to install our custom Python module (src/hyper) in your poetry environment:

cd src/
poetry run pip install -e .

Reproducing our analysis

Our analysis can be reproduced either by running scripts/run_analysis.sh:

cd scripts
poetry run bash run_analysis.sh

..or by the use of make:

poetry run make <ANALYSIS TARGET>

We provide the following targets for make:

Analysis target Description
all Runs the entire analysis pipeline
load Downloads scikit-learn's handwritten digit dataset
evaluate Runs our cross-validated hyper-parameter evaluation
plot Creates our results figure

This README file is strongly inspired by the Cookiecutter Data Science Structure

Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022