Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Related tags

Deep Learninglooking
Overview

Do pedestrians pay attention? Eye contact detection for autonomous driving

Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

alt text

Image taken from : https://jooinn.com/people-walking-on-pedestrian-lane-during-daytime.html . Results obtained with the model trained on JackRabbot, Nuscenes, JAAD and Kitti. The model file is available at models/predictor and can be reused for testing with the predictor.

Abstract

In urban or crowded environments, humans rely on eye contact for fast and efficient communication with nearby people. Autonomous agents also need to detect eye contact to interact with pedestrians and safely navigate around them. In this paper, we focus on eye contact detection in the wild, i.e., real-world scenarios for autonomous vehicles with no control over the environment or the distance of pedestrians. We introduce a model that leverages semantic keypoints to detect eye contact and show that this high-level representation (i) achieves state-of-the-art results on the publicly-available dataset JAAD, and (ii) conveys better generalization properties than leveraging raw images in an end-to-end network. To study domain adaptation, we create LOOK: a large-scale dataset for eye contact detection in the wild, which focuses on diverse and unconstrained scenarios for real-world generalization. The source code and the LOOK dataset are publicly shared towards an open science mission.

Table of contents

Requirements

Use 3.6.9 <= python < 3.9. Run pip3 install -r requirements.txt to get the dependencies

Predictor

Get predictions from our pretrained model using any image with the predictor. The scripts extracts the human keypoints on the fly using OpenPifPaf. The predictor supports eye contact detection using human keypoints only. You need to specify the following arguments in order to run correctly the script:

Parameter Description
--glob Glob expression to be used. Example: .png
--images Path to the input images. If glob is enabled you need the path to the directory where you have the query images
--looking_threshold Threshold to define an eye contact. Default 0.5
--transparency Transparency of the output poses. Default 0.4

Example command:

If you want to reproduce the result of the top image, run:

If you want to run the predictor on a GPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg

If you want to run the predictor on a CPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg --device cpu --disable-cuda

Create the datasets for training and evaluation

Please follow the instructions on the folder create_data.

Training your models on LOOK / JAAD / PIE

You have one config file to modify. Do not change the variables name. Check the meaning of each variable to change on the training wiki.

After changing your configuration file, run:

python train.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Evaluate your trained models

Check the meaning of each variable to change on the evaluation wiki.

After changing your configuration file, run:

python evaluate.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Annotate new images

Check out the folder annotator in order to run our annotator to annotate new instances for the task.

Credits

Credits to OpenPifPaf for the pose detection part, and JRDB, Nuscenes and Kitti datasets for the images.

Cite our work

If you use our work for your research please cite us :)

@misc{belkada2021pedestrians,
      title={Do Pedestrians Pay Attention? Eye Contact Detection in the Wild}, 
      author={Younes Belkada and Lorenzo Bertoni and Romain Caristan and Taylor Mordan and Alexandre Alahi},
      year={2021},
      eprint={2112.04212},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022