Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Related tags

Deep Learninglooking
Overview

Do pedestrians pay attention? Eye contact detection for autonomous driving

Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

alt text

Image taken from : https://jooinn.com/people-walking-on-pedestrian-lane-during-daytime.html . Results obtained with the model trained on JackRabbot, Nuscenes, JAAD and Kitti. The model file is available at models/predictor and can be reused for testing with the predictor.

Abstract

In urban or crowded environments, humans rely on eye contact for fast and efficient communication with nearby people. Autonomous agents also need to detect eye contact to interact with pedestrians and safely navigate around them. In this paper, we focus on eye contact detection in the wild, i.e., real-world scenarios for autonomous vehicles with no control over the environment or the distance of pedestrians. We introduce a model that leverages semantic keypoints to detect eye contact and show that this high-level representation (i) achieves state-of-the-art results on the publicly-available dataset JAAD, and (ii) conveys better generalization properties than leveraging raw images in an end-to-end network. To study domain adaptation, we create LOOK: a large-scale dataset for eye contact detection in the wild, which focuses on diverse and unconstrained scenarios for real-world generalization. The source code and the LOOK dataset are publicly shared towards an open science mission.

Table of contents

Requirements

Use 3.6.9 <= python < 3.9. Run pip3 install -r requirements.txt to get the dependencies

Predictor

Get predictions from our pretrained model using any image with the predictor. The scripts extracts the human keypoints on the fly using OpenPifPaf. The predictor supports eye contact detection using human keypoints only. You need to specify the following arguments in order to run correctly the script:

Parameter Description
--glob Glob expression to be used. Example: .png
--images Path to the input images. If glob is enabled you need the path to the directory where you have the query images
--looking_threshold Threshold to define an eye contact. Default 0.5
--transparency Transparency of the output poses. Default 0.4

Example command:

If you want to reproduce the result of the top image, run:

If you want to run the predictor on a GPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg

If you want to run the predictor on a CPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg --device cpu --disable-cuda

Create the datasets for training and evaluation

Please follow the instructions on the folder create_data.

Training your models on LOOK / JAAD / PIE

You have one config file to modify. Do not change the variables name. Check the meaning of each variable to change on the training wiki.

After changing your configuration file, run:

python train.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Evaluate your trained models

Check the meaning of each variable to change on the evaluation wiki.

After changing your configuration file, run:

python evaluate.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Annotate new images

Check out the folder annotator in order to run our annotator to annotate new instances for the task.

Credits

Credits to OpenPifPaf for the pose detection part, and JRDB, Nuscenes and Kitti datasets for the images.

Cite our work

If you use our work for your research please cite us :)

@misc{belkada2021pedestrians,
      title={Do Pedestrians Pay Attention? Eye Contact Detection in the Wild}, 
      author={Younes Belkada and Lorenzo Bertoni and Romain Caristan and Taylor Mordan and Alexandre Alahi},
      year={2021},
      eprint={2112.04212},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021