EsViT: Efficient self-supervised Vision Transformers

Overview

Efficient Self-Supervised Vision Transformers (EsViT)

PWC

PyTorch implementation for EsViT, built with two techniques:

  • A multi-stage Transformer architecture. Three multi-stage Transformer variants are implemented under the folder models.
  • A region-level matching pre-train task. The region-level matching task is implemented in function DDINOLoss(nn.Module) (Line 648) in main_esvit.py. Please use --use_dense_prediction True, otherwise only the view-level task is used.
Efficiency vs accuracy comparison under the linear classification protocol on ImageNet with EsViT
Figure: Efficiency vs accuracy comparison under the linear classification protocol on ImageNet. Left: Throughput of all SoTA SSL vision systems, circle sizes indicates model parameter counts; Right: performance over varied parameter counts for models with moderate (throughout/#parameters) ratio. Please refer Section 4.1 for details.

Pretrained models

You can download the full checkpoint (trained with both view-level and region-level tasks, batch size=512 and ImageNet-1K.), which contains backbone and projection head weights for both student and teacher networks.

arch params linear k-nn download logs
EsViT (Swin-T, W=7) 28M 78.0% 75.7% full ckpt train linear knn
EsViT (Swin-S, W=7) 49M 79.5% 77.7% full ckpt train linear knn
EsViT (Swin-B, W=7) 87M 80.4% 78.9% full ckpt train linear knn
EsViT (Swin-T, W=14) 28M 78.7% 77.0% full ckpt train linear knn
EsViT (Swin-S, W=14) 49M 80.8% 79.1% full ckpt train linear knn
EsViT (Swin-B, W=14) 87M 81.3% 79.3% full ckpt train linear knn

EsViT (Swin-T, W=7) with different pre-train datasets (view-level task only)

arch params batch size pre-train dataset linear k-nn download logs
EsViT 28M 512 ImageNet-1K 77.0% 74.2% full ckpt train linear knn
EsViT 28M 1024 ImageNet-1K 77.1% 73.7% full ckpt train linear knn
EsViT 28M 1024 WebVision-v1 75.4% 69.4% full ckpt train linear knn
EsViT 28M 1024 OpenImages-v4 69.6% 60.3% full ckpt train linear knn
EsViT 28M 1024 ImageNet-22K 73.5% 66.1% full ckpt train linear knn

Pre-training

One-node training

To train on 1 node with 16 GPUs for Swin-T model size:

PROJ_PATH=your_esvit_project_path
DATA_PATH=$PROJ_PATH/project/data/imagenet

OUT_PATH=$PROJ_PATH/output/esvit_exp/ssl/swin_tiny_imagenet/
python -m torch.distributed.launch --nproc_per_node=16 main_esvit.py --arch swin_tiny --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml 

The main training script is main_esvit.py and conducts the training loop, taking the following options (among others) as arguments:

  • --use_dense_prediction: whether or not to use the region matching task in pre-training
  • --arch: switch between different sparse self-attention in the multi-stage Transformer architecture. Example architecture choices for EsViT training include [swin_tiny, swin_small, swin_base, swin_large,cvt_tiny, vil_2262]. The configuration files should be adjusted accrodingly, we provide example below. One may specify the network configuration by editing the YAML file under experiments/imagenet/*/*.yaml. The default window size=7; To consider a multi-stage architecture with window size=14, please choose yaml files with window14 in filenames.

To train on 1 node with 16 GPUs for Convolutional vision Transformer (CvT) models:

python -m torch.distributed.launch --nproc_per_node=16 main_evsit.py --arch cvt_tiny --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --aug-opt dino_aug --cfg experiments/imagenet/cvt_v4/s1.yaml

To train on 1 node with 16 GPUs for Vision Longformer (ViL) models:

python -m torch.distributed.launch --nproc_per_node=16 main_evsit.py --arch vil_2262 --data_path $DATA_PATH/train --output_dir $OUT_PATH --batch_size_per_gpu 32 --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --use_dense_prediction True --aug-opt dino_aug --cfg experiments/imagenet/vil/vil_small/base.yaml MODEL.SPEC.MSVIT.ARCH 'l1,h3,d96,n2,s1,g1,p4,f7,a0_l2,h6,d192,n2,s1,g1,p2,f7,a0_l3,h12,d384,n6,s0,g1,p2,f7,a0_l4,h24,d768,n2,s0,g0,p2,f7,a0' MODEL.SPEC.MSVIT.MODE 1 MODEL.SPEC.MSVIT.VIL_MODE_SWITCH 0.75

Multi-node training

To train on 2 nodes with 16 GPUs each (total 32 GPUs) for Swin-Small model size:

OUT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_small/bl_lr0.0005_gpu16_bs16_multicrop_epoch300_dino_aug_window14
python main_evsit_mnodes.py --num_nodes 2 --num_gpus_per_node 16 --data_path $DATA_PATH/train --output_dir $OUT_PATH/continued_from0200_dense --batch_size_per_gpu 16 --arch swin_small --zip_mode True --epochs 300 --teacher_temp 0.07 --warmup_epochs 10 --warmup_teacher_temp_epochs 30 --norm_last_layer false --cfg experiments/imagenet/swin/swin_small_patch4_window14_224.yaml --use_dense_prediction True --pretrained_weights_ckpt $OUT_PATH/checkpoint0200.pth

Evaluation:

k-NN and Linear classification on ImageNet

To train a supervised linear classifier on frozen weights on a single node with 4 gpus, run eval_linear.py. To train a k-NN classifier on frozen weights on a single node with 4 gpus, run eval_knn.py. Please specify --arch, --cfg and --pretrained_weights to choose a pre-trained checkpoint. If you want to evaluate the last checkpoint of EsViT with Swin-T, you can run for example:

PROJ_PATH=your_esvit_project_path
DATA_PATH=$PROJ_PATH/project/data/imagenet

OUT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_tiny/bl_lr0.0005_gpu16_bs32_dense_multicrop_epoch300
CKPT_PATH=$PROJ_PATH/exp_output/esvit_exp/swin/swin_tiny/bl_lr0.0005_gpu16_bs32_dense_multicrop_epoch300/checkpoint.pth

python -m torch.distributed.launch --nproc_per_node=4 eval_linear.py --data_path $DATA_PATH --output_dir $OUT_PATH/lincls/epoch0300 --pretrained_weights $CKPT_PATH --checkpoint_key teacher --batch_size_per_gpu 256 --arch swin_tiny --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml --n_last_blocks 4 --num_labels 1000 MODEL.NUM_CLASSES 0

python -m torch.distributed.launch --nproc_per_node=4 eval_knn.py --data_path $DATA_PATH --dump_features $OUT_PATH/features/epoch0300 --pretrained_weights $CKPT_PATH --checkpoint_key teacher --batch_size_per_gpu 256 --arch swin_tiny --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml MODEL.NUM_CLASSES 0

Analysis/Visualization of correspondence and attention maps

You can analyze the learned models by running python run_analysis.py. One example to analyze EsViT (Swin-T) is shown.

For an invidiual image (with path --image_path $IMG_PATH), we visualize the attention maps and correspondence of the last layer:

python run_analysis.py --arch swin_tiny --image_path $IMG_PATH --output_dir $OUT_PATH --pretrained_weights $CKPT_PATH --learning ssl --seed $SEED --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml --vis_attention True --vis_correspondence True MODEL.NUM_CLASSES 0 

For an image dataset (with path --data_path $DATA_PATH), we quantatively measure the correspondence:

python run_analysis.py --arch swin_tiny --data_path $DATA_PATH --output_dir $OUT_PATH --pretrained_weights $CKPT_PATH --learning ssl --seed $SEED --cfg experiments/imagenet/swin/swin_tiny_patch4_window7_224.yaml  --measure_correspondence True MODEL.NUM_CLASSES 0 

For more examples, please see scripts/scripts_local/run_analysis.sh.

Citation

If you find this repository useful, please consider giving a star and citation 🍺 :

@article{li2021esvit,
  title={Efficient Self-supervised Vision Transformers for Representation Learning},
  author={Li, Chunyuan and Yang, Jianwei and Zhang, Pengchuan and Gao, Mei and Xiao, Bin and Dai, Xiyang and Yuan, Lu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2106.09785},
  year={2021}
}

Related Projects/Codebase

[Swin Transformers] [Vision Longformer] [Convolutional vision Transformers (CvT)] [Focal Transformers]

Acknowledgement

Our implementation is built partly upon packages: [Dino] [Timm]

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022