Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

Overview

RGBT Crowd Counting

Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [PDF]

Download RGBT-CC Dataset & Models: [Dropbox][BaiduYun (PW: RGBT)]

Our framework can be implemented with various backbone networks. You can refer to this page for implementing BL+IADM. Moreover, the proposed framework can also be applied to RGBD crowd counting and the implementation of CSRNet+IADM is available.

If you use this code and benchmark for your research, please cite our work:

@inproceedings{liu2021cross,
  title={Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting},
  author={Liu, Lingbo and Chen, Jiaqi and Wu, Hefeng and Li, Guanbin and Li, Chenglong and Lin, Liang},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Introduction

Crowd counting is a fundamental yet challenging task, which desires rich information to generate pixel-wise crowd density maps. In this work, we find that incorporating optical and thermal information can greatly help to recognize pedestrians. To promote future researches in this field, we introduce a large-scale RGBT Crowd Counting (RGBT-CC) benchmark, which contains 2,030 pairs of RGB-thermal images with 138,389 annotated people. Furthermore, to facilitate the multimodal crowd counting, we propose a cross-modal collaborative representation learning framework, which consists of multiple modality-specific branches, a modality-shared branch, and an Information Aggregation-Distribution Module (IADM) to capture the complementary information of different modalities fully. Specifically, our IADM incorporates two collaborative information transfers to dynamically enhance the modality-shared and modality-specific representations with a dual information propagation mechanism. Extensive experiments conducted on the RGBT-CC benchmark demonstrate the effectiveness of our framework for RGBT crowd counting.

RGBT-CC Benchmark

To promote the future research of this task, we propose a large-scale RGBT Crowd Counting (RGBT-CC) benchmark. Specifically, this benchmark consists of 2,030 pairs of 640x480 RGB-thermal images captured in various scenarios (e.g., malls, streets, playgrounds, train stations, metro stations, etc). Among these samples, 1,013 pairs are captured in the light and 1,017 pairs are in the darkness. A total of 138,389 pedestrians are marked with point annotations, on average 68 people per image. Finally, the proposed RGBT-CC benchmark is randomly divided into three parts: 1030 pairs are used for training, 200 pairs are for validation and 800 pairs are for testing. Compared with those Internet-based datasets with serious bias, our RGBT-CC dataset has closer crowd density distribution to realistic cities, since our images are captured in urban scenes with various densities. Therefore, our dataset has wider applications for urban crowd analysis.

Method

The proposed RGBT crowd counting framework is composed of three parallel backbones and an Information Aggregation-Distribution Module (IADM). Specifically, the top and bottom backbones are developed for modality-specific (i.e. RGB images and thermal images) representation learning, while the middle backbone is designed for modality-shared representation learning. To fully exploit the multimodal complementarities, our IADM dynamically transfers the specific-shared information to collaboratively enhance the modality-specific and modality-shared representations. Consequently, the final modality-shared feature contains comprehensive information and facilitates generating high-quality crowd density maps.

Experiments

More References

Crowd Counting with Deep Structured Scale Integration Network, ICCV 2019 [PDF]

Crowd Counting using Deep Recurrent Spatial-Aware Network, IJCAI 2018 [PDF]

Efficient Crowd Counting via Structured Knowledge Transfer, ACM MM 2020 [PDF]

Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022