Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Overview

Neural Material

Official code repository for the paper:

Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Henzler, Deschaintre, J. Mitra, Ritschel

[Paper] [Project page]

Rerendering

Data

The dataset is stored under flash_images and contains 306 train folders and 116 test folders (including images from Aitalla et al).

Install dependencies

conda create -n neuralmaterial python=3.8
conda activate neuralmaterial
pip install hydra-core --upgrade
pip install tqdm
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

Training

For training please run

python scripts/train.py

The default config is located at config/config_default.yaml.

Inference

Note, is a relative path in the flash_images/test and is exptected to be located in the trainings/ folder.

Synthesis

In order to synthesise given flash images located in the test folder please run

python scripts/test.py --model 
   
     --test_image_id 
    
      --finetune 
     

     
    
   

Interpolation

Given two images for interpolation please run

python scripts/interpolate.py --model 
   
     --weights1 
    
      --weights2 
     
       --test_image_id1 
      
        --test_image_id2 
        
       
      
     
    
   

If you would like to use fine-tuned weights please run the scripts/test.py command above in order to retrieve them.

Examples

Run the file run_examples.sh to synthesise / interpolate a few examples.

Citation

If you find our work useful in your research, please cite:

@article{henzler2021neuralmaterial,
  title={Generative Modelling of BRDF Textures from Flash Images},
  author={Henzler, Philipp and Deschaintre, Valentin and Mitra, Niloy J and Ritschel, Tobias},
  journal={ACM Trans Graph (Proc. SIGGRAPH Asia)},
  year={2021},
  volume={40},
  number={6},
}

Contact

If you have any questions, please email Philipp Henzler at [email protected].

Owner
Philipp Henzler
Phd Student in Computer Vision/Graphics and Machine Learning.
Philipp Henzler
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
LBK 35 Dec 26, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023