Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Overview

Neural Material

Official code repository for the paper:

Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Henzler, Deschaintre, J. Mitra, Ritschel

[Paper] [Project page]

Rerendering

Data

The dataset is stored under flash_images and contains 306 train folders and 116 test folders (including images from Aitalla et al).

Install dependencies

conda create -n neuralmaterial python=3.8
conda activate neuralmaterial
pip install hydra-core --upgrade
pip install tqdm
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

Training

For training please run

python scripts/train.py

The default config is located at config/config_default.yaml.

Inference

Note, is a relative path in the flash_images/test and is exptected to be located in the trainings/ folder.

Synthesis

In order to synthesise given flash images located in the test folder please run

python scripts/test.py --model 
   
     --test_image_id 
    
      --finetune 
     

     
    
   

Interpolation

Given two images for interpolation please run

python scripts/interpolate.py --model 
   
     --weights1 
    
      --weights2 
     
       --test_image_id1 
      
        --test_image_id2 
        
       
      
     
    
   

If you would like to use fine-tuned weights please run the scripts/test.py command above in order to retrieve them.

Examples

Run the file run_examples.sh to synthesise / interpolate a few examples.

Citation

If you find our work useful in your research, please cite:

@article{henzler2021neuralmaterial,
  title={Generative Modelling of BRDF Textures from Flash Images},
  author={Henzler, Philipp and Deschaintre, Valentin and Mitra, Niloy J and Ritschel, Tobias},
  journal={ACM Trans Graph (Proc. SIGGRAPH Asia)},
  year={2021},
  volume={40},
  number={6},
}

Contact

If you have any questions, please email Philipp Henzler at [email protected].

Owner
Philipp Henzler
Phd Student in Computer Vision/Graphics and Machine Learning.
Philipp Henzler
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022