《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Overview

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

by Yan Wang*, Xiangyu Chen*, Yurong You, Li Erran, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao*

Figure

Dependencies

Usage

Prepare Datasets (Jupyter notebook)

We develop our method on these datasets:

  1. Configure dataset_path in config_path.py.

    Raw datasets will be organized as the following structure:

     dataset_path/
         | kitti/               # KITTI object detection 3D dataset
             | training/
             | testing/
         | argo/                # Argoverse dataset v1.1
             | train1/
             | train2/
             | train3/
             | train4/
             | val/
             | test/
         | nusc/                # nuScenes dataset v1.0
             | maps/
             | samples/
             | sweeps/
             | v1.0-trainval/
         | lyft/                # Lyft Level 5 dataset v1.02
             | v1.02-train/
         | waymo/               # Waymo dataset v1.0
             | training/
             | validation/
     
  2. Download all datasets.

    For KITTI, Argoverse and Waymo, we provide scripts for automatic download.

    cd scripts/
    python download.py [--datasets kitti+argo+waymo]

    nuScenes and Lyft need to downloaded manually.

  3. Convert all datasets to KITTI format.

    cd scripts/
    python -m pip install -r convert_requirements.txt
    python convert.py [--datasets argo+nusc+lyft+waymo]
  4. Split validation set

    We provide the train/val split used in our experiments under split folder.

    cd split/
    python replace_split.py
  5. Generate car subset

    We filter scenes and only keep those with cars.

    cd scripts/
    python gen_car_split.py

Statistical Normalization (Jupyter notebook)

  1. Compute car size statistics of each dataset. The computed statistics are stored as label_stats_{train/val/test}.json under KITTI format dataset root.

    cd stat_norm/
    python stat.py
  2. Generate rescaled datasets according to car size statistics. The rescaled datasets are stored under $dataset_path/rescaled_datasets by default.

    cd stat_norm/
    python norm.py [--path $PATH]

Training (To be updated)

We use PointRCNN to validate our method.

  1. Setup PointRCNN

    cd pointrcnn/
    ./build_and_install.sh
  2. Build datasets in PointRCNN format.

    cd pointrcnn/tools/
    python generate_multi_data.py
    python generate_gt_database.py --root ...
  3. Download the models pretrained on source domains from google drive using gdrive.

    cd pointrcnn/tools/
    gdrive download -r 14MXjNImFoS2P7YprLNpSmFBsvxf5J2Kw
  4. Adapt to a new domain by re-training with rescaled data.

    cd pointrcnn/tools/
    
    python train_rcnn.py --cfg_file ...

Inference

cd pointrcnn/tools/
python eval_rcnn.py --ckpt /path/to/checkpoint.pth --dataset $dataset --output_dir $output_dir 

Evaluation

We provide evaluation code with

  • old (based on bbox height) and new (based on distance) difficulty metrics
  • output transformation functions to locate domain gap
python evaluate/
python evaluate.py --result_path $predictions --dataset_path $dataset_root --metric [old/new]

Citation

@inproceedings{wang2020train,
  title={Train in germany, test in the usa: Making 3d object detectors generalize},
  author={Yan Wang and Xiangyu Chen and Yurong You and Li Erran and Bharath Hariharan and Mark Campbell and Kilian Q. Weinberger and Wei-Lun Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11713-11723},
  year={2020}
}
Owner
Xiangyu Chen
Ph.D. Student in Computer Science
Xiangyu Chen
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021