《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Overview

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

by Yan Wang*, Xiangyu Chen*, Yurong You, Li Erran, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao*

Figure

Dependencies

Usage

Prepare Datasets (Jupyter notebook)

We develop our method on these datasets:

  1. Configure dataset_path in config_path.py.

    Raw datasets will be organized as the following structure:

     dataset_path/
         | kitti/               # KITTI object detection 3D dataset
             | training/
             | testing/
         | argo/                # Argoverse dataset v1.1
             | train1/
             | train2/
             | train3/
             | train4/
             | val/
             | test/
         | nusc/                # nuScenes dataset v1.0
             | maps/
             | samples/
             | sweeps/
             | v1.0-trainval/
         | lyft/                # Lyft Level 5 dataset v1.02
             | v1.02-train/
         | waymo/               # Waymo dataset v1.0
             | training/
             | validation/
     
  2. Download all datasets.

    For KITTI, Argoverse and Waymo, we provide scripts for automatic download.

    cd scripts/
    python download.py [--datasets kitti+argo+waymo]

    nuScenes and Lyft need to downloaded manually.

  3. Convert all datasets to KITTI format.

    cd scripts/
    python -m pip install -r convert_requirements.txt
    python convert.py [--datasets argo+nusc+lyft+waymo]
  4. Split validation set

    We provide the train/val split used in our experiments under split folder.

    cd split/
    python replace_split.py
  5. Generate car subset

    We filter scenes and only keep those with cars.

    cd scripts/
    python gen_car_split.py

Statistical Normalization (Jupyter notebook)

  1. Compute car size statistics of each dataset. The computed statistics are stored as label_stats_{train/val/test}.json under KITTI format dataset root.

    cd stat_norm/
    python stat.py
  2. Generate rescaled datasets according to car size statistics. The rescaled datasets are stored under $dataset_path/rescaled_datasets by default.

    cd stat_norm/
    python norm.py [--path $PATH]

Training (To be updated)

We use PointRCNN to validate our method.

  1. Setup PointRCNN

    cd pointrcnn/
    ./build_and_install.sh
  2. Build datasets in PointRCNN format.

    cd pointrcnn/tools/
    python generate_multi_data.py
    python generate_gt_database.py --root ...
  3. Download the models pretrained on source domains from google drive using gdrive.

    cd pointrcnn/tools/
    gdrive download -r 14MXjNImFoS2P7YprLNpSmFBsvxf5J2Kw
  4. Adapt to a new domain by re-training with rescaled data.

    cd pointrcnn/tools/
    
    python train_rcnn.py --cfg_file ...

Inference

cd pointrcnn/tools/
python eval_rcnn.py --ckpt /path/to/checkpoint.pth --dataset $dataset --output_dir $output_dir 

Evaluation

We provide evaluation code with

  • old (based on bbox height) and new (based on distance) difficulty metrics
  • output transformation functions to locate domain gap
python evaluate/
python evaluate.py --result_path $predictions --dataset_path $dataset_root --metric [old/new]

Citation

@inproceedings{wang2020train,
  title={Train in germany, test in the usa: Making 3d object detectors generalize},
  author={Yan Wang and Xiangyu Chen and Yurong You and Li Erran and Bharath Hariharan and Mark Campbell and Kilian Q. Weinberger and Wei-Lun Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11713-11723},
  year={2020}
}
Owner
Xiangyu Chen
Ph.D. Student in Computer Science
Xiangyu Chen
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022