Easy to use Audio Tagging in PyTorch

Overview

Audio Classification, Tagging & Sound Event Detection in PyTorch

Progress:

  • Fine-tune on audio classification
  • Fine-tune on audio tagging
  • Fine-tune on sound event detection
  • Add tagging metrics
  • Add Tutorial
  • Add Augmentation Notebook
  • Add more schedulers
  • Add FSDKaggle2019 dataset
  • Add MTT dataset
  • Add DESED

Model Zoo

AudioSet Pretrained Models
Model Task mAP
(%)
Sample Rate
(kHz)
Window Length Num Mels Fmax Weights
CNN14 Tagging 43.1 32 1024 64 14k download
CNN14_16k Tagging 43.8 16 512 64 8k download
CNN14_DecisionLevelMax SED 38.5 32 1024 64 14k download

Note: These models will be used as a pretrained model in the fine-tuning tasks below. Check out audioset-tagging-cnn, if you want to train on AudioSet dataset.

Fine-tuned Classification Models
Model Dataset Accuracy
(%)
Sample Rate
(kHz)
Weights
CNN14 ESC50 (Fold-5) 95.75 32 download
CNN14 FSDKaggle2018 (test) 93.56 32 download
CNN14 SpeechCommandsv1 (val/test) 96.60/96.77 32 download
Fine-tuned Tagging Models
Model Dataset mAP(%) AUC d-prime Sample Rate
(kHz)
Config Weights
CNN14 FSDKaggle2019 - - - 32 - -
Fine-tuned SED Models
Model Dataset F1 Sample Rate
(kHz)
Config Weights
CNN14_DecisionLevelMax DESED - 32 - -

Supported Datasets

Dataset Task Classes Train Val Test Audio Length Audio Spec Size
ESC-50 Classification 50 2,000 5 folds - 5s 44.1kHz, mono 600MB
UrbanSound8k Classification 10 8,732 10 folds - <=4s Vary 5.6GB
FSDKaggle2018 Classification 41 9,473 - 1,600 300ms~30s 44.1kHz, mono 4.6GB
SpeechCommandsv1 Classification 30 51,088 6,798 6,835 <=1s 16kHz, mono 1.4GB
SpeechCommandsv2 Classification 35 84,843 9,981 11,005 <=1s 16kHz, mono 2.3GB
FSDKaggle2019* Tagging 80 4,970+19,815 - 4,481 300ms~30s 44.1kHz, mono 24GB
MTT* Tagging 50 19,000 - - - - 3GB
DESED* SED 10 - - - 10 - -

Notes: * datasets are not available yet. Classification dataset are treated as multi-class/single-label classification and tagging and sed datasets are treated as multi-label classification.

Dataset Structure (click to expand)

Download the dataset and prepare it into the following structure.

datasets
|__ ESC50
    |__ audio

|__ Urbansound8k
    |__ audio

|__ FSDKaggle2018
    |__ audio_train
    |__ audio_test
    |__ FSDKaggle2018.meta
        |__ train_post_competition.csv
        |__ test_post_competition_scoring_clips.csv

|__ SpeechCommandsv1/v2
    |__ bed
    |__ bird
    |__ ...
    |__ testing_list.txt
    |__ validation_list.txt


Augmentations (click to expand)

Currently, the following augmentations are supported. More will be added in the future. You can test the effects of augmentations with this notebook

WaveForm Augmentations:

  • MixUp
  • Background Noise
  • Gaussian Noise
  • Fade In/Out
  • Volume
  • CutMix

Spectrogram Augmentations:

  • Time Masking
  • Frequency Masking
  • Filter Augmentation

Usage

Requirements (click to expand)
  • python >= 3.6
  • pytorch >= 1.8.1
  • torchaudio >= 0.8.1

Other requirements can be installed with pip install -r requirements.txt.


Configuration (click to expand)
  • Create a configuration file in configs. Sample configuration for ESC50 dataset can be found here.
  • Copy the contents of this and then edit the fields you think if it is needed.
  • This configuration file is needed for all of training, evaluation and prediction scripts.

Training (click to expand)

To train with a single GPU:

$ python tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

To train with multiple gpus, set DDP field in config file to true and run as follows:

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

Evaluation (click to expand)

Make sure to set MODEL_PATH of the configuration file to your trained model directory.

$ python tools/val.py --cfg configs/CONFIG_FILE.yaml

Audio Classification/Tagging Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/infer.py --cfg configs/audioset.yaml

You will get an output similar to this:

Class                     Confidence
----------------------  ------------
Speech                     0.897762
Telephone bell ringing     0.752206
Telephone                  0.219329
Inside, small room         0.20761
Music                      0.0770325

Sound Event Detection Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/sed_infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/sed_infer.py --cfg configs/audioset_sed.yaml

You will get an output similar to this:

Class                     Start    End
----------------------  -------  -----
Speech                      2.2    7
Telephone bell ringing      0      2.5

The following plot will also be shown, if you set PLOT to true:

sed_result


References (click to expand)

Citations (click to expand)
@misc{kong2020panns,
      title={PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition}, 
      author={Qiuqiang Kong and Yin Cao and Turab Iqbal and Yuxuan Wang and Wenwu Wang and Mark D. Plumbley},
      year={2020},
      eprint={1912.10211},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{gong2021ast,
      title={AST: Audio Spectrogram Transformer}, 
      author={Yuan Gong and Yu-An Chung and James Glass},
      year={2021},
      eprint={2104.01778},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{nam2021heavily,
      title={Heavily Augmented Sound Event Detection utilizing Weak Predictions}, 
      author={Hyeonuk Nam and Byeong-Yun Ko and Gyeong-Tae Lee and Seong-Hu Kim and Won-Ho Jung and Sang-Min Choi and Yong-Hwa Park},
      year={2021},
      eprint={2107.03649},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
You might also like...
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A fast and easy to use, moddable, Python based Minecraft server!
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

Releases(v0.2.0)
  • v0.2.0(Aug 17, 2021)

    This release includes the following:

    • Fine-tuned on ESC50, FSDKaggle2018, SpeechCommandsv1
    • Add waveform augmentations
    • Add spectrogram augmentations
    • Add augmentation testing notebook
    • Add tagging metrics
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Aug 13, 2021)

Owner
sithu3
AI Developer
sithu3
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022