Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Overview

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

arXiv

This is the code base for weakly supervised NER.

We provide a three stage framework:

  • Stage I: Domain continual pre-training;
  • Stage II: Noise-aware weakly supervised pre-training;
  • Stage III: Fine-tuning.

In this code base, we actually provide basic building blocks which allow arbitrary combination of different stages. We also provide examples scripts for reproducing our results in BioMedical NER.

See details in arXiv.

Performance Benchmark

BioMedical NER

Method (F1) BC5CDR-chem BC5CDR-disease NCBI-disease
BERT 89.99 79.92 85.87
bioBERT 92.85 84.70 89.13
PubMedBERT 93.33 85.62 87.82
Ours 94.17 90.69 92.28

See more in bio_script/README.md

Dependency

pytorch==1.6.0
transformers==3.3.1
allennlp==1.1.0
flashtool==0.0.10
ray==0.8.7

Install requirements

pip install -r requirements.txt

(If the allennlp and transformers are incompatible, install allennlp first and then update transformers. Since we only use some small functions of allennlp, it should works fine. )

File Structure:

├── bert-ner          #  Python Code for Training NER models
│   └── ...
└── bio_script        #  Shell Scripts for Training BioMedical NER models
    └── ...

Usage

See examples in bio_script

Hyperparameter Explaination

Here we explain hyperparameters used the scripts in ./bio_script.

Training Scripts:

Scripts

  • roberta_mlm_pretrain.sh
  • weak_weighted_selftrain.sh
  • finetune.sh

Hyperparameter

  • GPUID: Choose the GPU for training. It can also be specified by xxx.sh 0,1,2,3.
  • MASTER_PORT: automatically constructed (avoid conflicts) for distributed training.
  • DISTRIBUTE_GPU: use distributed training or not
  • PROJECT_ROOT: automatically detected, the root path of the project folder.
  • DATA_DIR: Directory of the training data, where it contains train.txt test.txt dev.txt labels.txt weak_train.txt (weak data) aug_train.txt (optional).
  • USE_DA: if augment training data by augmentation, i.e., combine train.txt + aug_train.txt in DATA_DIR for training.
  • BERT_MODEL: the model backbone, e.g., roberta-large. See transformers for details.
  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • LOSSFUNC: nll the normal loss function, corrected_nll noise-aware risk (i.e., add weighted log-unlikelihood regularization: wei*nll + (1-wei)*null ).
  • MAX_WEIGHT: The maximum weight of a sample in the loss.
  • MAX_LENGTH: max sentence length.
  • BATCH_SIZE: batch size per GPU.
  • NUM_EPOCHS: number of training epoches.
  • LR: learning rate.
  • WARMUP: learning rate warmup steps.
  • SAVE_STEPS: the frequency of saving models.
  • EVAL_STEPS: the frequency of testing on validation.
  • SEED: radnom seed.
  • OUTPUT_DIR: the directory for saving model and code. Some parameters will be automatically appended to the path.
    • roberta_mlm_pretrain.sh: It's better to manually check where you want to save the model.]
    • finetune.sh: It will be save in ${BERT_MODEL_PATH}/finetune_xxxx.
    • weak_weighted_selftrain.sh: It will be save in ${BERT_MODEL_PATH}/selftrain/${FBA_RULE}_xxxx (see FBA_RULE below)

There are some addition parameters need to be set for weakly supervised learning (weak_weighted_selftrain.sh).

Profiling Script

Scripts

  • profile.sh

Profiling scripts also use the same entry as the training script: bert-ner/run_ner.py but only do evaluation.

Hyperparameter Basically the same as training script.

  • PROFILE_FILE: can be train,dev,test or a specific path to a txt data. E.g., using Weak by

    PROFILE_FILE=weak_train_100.txt PROFILE_FILE=$DATA_DIR/$PROFILE_FILE

  • OUTPUT_DIR: It will be saved in OUTPUT_DIR=${BERT_MODEL_PATH}/predict/profile

Weakly Supervised Data Refinement Script

Scripts

  • profile2refinedweakdata.sh

Hyperparameter

  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • WEI_RULE: rule for generating weight for each weak sample.
    • uni: all are 1
    • avgaccu: confidence estimate for new labels generated by all_overwrite
    • avgaccu_weak_non_O_promote: confidence estimate for new labels generated by non_O_overwrite
  • PRED_RULE: rule for generating new weak labels.
    • non_O_overwrite: non-entity ('O') is overwrited by prediction
    • all_overwrite: all use prediction, i.e., self-training
    • no: use original weak labels
    • non_O_overwrite_all_overwrite_over_accu_xx: non_O_overwrite + if confidence is higher than xx all tokens use prediction as new labels

The generated data will be saved in ${BERT_MODEL_PATH}/predict/weak_${PRED_RULE}-WEI_${WEI_RULE} WEAK_RULE specified in weak_weighted_selftrain.sh is essential the name of folder weak_${PRED_RULE}-WEI_${WEI_RULE}.

More Rounds of Training, Try Different Combination

  1. To do training with weakly supervised data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Create profile data, e.g., run ./bio_script/profile.sh for dev set and weak set
  • iii) Generate data with weak labels from profile data, e.g., run ./bio_script/profile2refinedweakdata.sh. You can use different rules to generate weights for each sample (WEI_RULE) and different rules to refine weak labels (PRED_RULE). See more details in ./ber-ner/profile2refinedweakdata.py
  • iv) Do training with ./bio_script/weak_weighted_selftrain.sh.
  1. To do fine-tuning with human labeled data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Run ./bio_script/finetune.sh.

Reference

@inproceedings{Jiang2021NamedER,
  title={Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data},
  author={Haoming Jiang and Danqing Zhang and Tianyue Cao and Bing Yin and T. Zhao},
  booktitle={ACL/IJCNLP},
  year={2021}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
Amazon
Amazon
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022