Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Overview

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

arXiv

This is the code base for weakly supervised NER.

We provide a three stage framework:

  • Stage I: Domain continual pre-training;
  • Stage II: Noise-aware weakly supervised pre-training;
  • Stage III: Fine-tuning.

In this code base, we actually provide basic building blocks which allow arbitrary combination of different stages. We also provide examples scripts for reproducing our results in BioMedical NER.

See details in arXiv.

Performance Benchmark

BioMedical NER

Method (F1) BC5CDR-chem BC5CDR-disease NCBI-disease
BERT 89.99 79.92 85.87
bioBERT 92.85 84.70 89.13
PubMedBERT 93.33 85.62 87.82
Ours 94.17 90.69 92.28

See more in bio_script/README.md

Dependency

pytorch==1.6.0
transformers==3.3.1
allennlp==1.1.0
flashtool==0.0.10
ray==0.8.7

Install requirements

pip install -r requirements.txt

(If the allennlp and transformers are incompatible, install allennlp first and then update transformers. Since we only use some small functions of allennlp, it should works fine. )

File Structure:

├── bert-ner          #  Python Code for Training NER models
│   └── ...
└── bio_script        #  Shell Scripts for Training BioMedical NER models
    └── ...

Usage

See examples in bio_script

Hyperparameter Explaination

Here we explain hyperparameters used the scripts in ./bio_script.

Training Scripts:

Scripts

  • roberta_mlm_pretrain.sh
  • weak_weighted_selftrain.sh
  • finetune.sh

Hyperparameter

  • GPUID: Choose the GPU for training. It can also be specified by xxx.sh 0,1,2,3.
  • MASTER_PORT: automatically constructed (avoid conflicts) for distributed training.
  • DISTRIBUTE_GPU: use distributed training or not
  • PROJECT_ROOT: automatically detected, the root path of the project folder.
  • DATA_DIR: Directory of the training data, where it contains train.txt test.txt dev.txt labels.txt weak_train.txt (weak data) aug_train.txt (optional).
  • USE_DA: if augment training data by augmentation, i.e., combine train.txt + aug_train.txt in DATA_DIR for training.
  • BERT_MODEL: the model backbone, e.g., roberta-large. See transformers for details.
  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • LOSSFUNC: nll the normal loss function, corrected_nll noise-aware risk (i.e., add weighted log-unlikelihood regularization: wei*nll + (1-wei)*null ).
  • MAX_WEIGHT: The maximum weight of a sample in the loss.
  • MAX_LENGTH: max sentence length.
  • BATCH_SIZE: batch size per GPU.
  • NUM_EPOCHS: number of training epoches.
  • LR: learning rate.
  • WARMUP: learning rate warmup steps.
  • SAVE_STEPS: the frequency of saving models.
  • EVAL_STEPS: the frequency of testing on validation.
  • SEED: radnom seed.
  • OUTPUT_DIR: the directory for saving model and code. Some parameters will be automatically appended to the path.
    • roberta_mlm_pretrain.sh: It's better to manually check where you want to save the model.]
    • finetune.sh: It will be save in ${BERT_MODEL_PATH}/finetune_xxxx.
    • weak_weighted_selftrain.sh: It will be save in ${BERT_MODEL_PATH}/selftrain/${FBA_RULE}_xxxx (see FBA_RULE below)

There are some addition parameters need to be set for weakly supervised learning (weak_weighted_selftrain.sh).

Profiling Script

Scripts

  • profile.sh

Profiling scripts also use the same entry as the training script: bert-ner/run_ner.py but only do evaluation.

Hyperparameter Basically the same as training script.

  • PROFILE_FILE: can be train,dev,test or a specific path to a txt data. E.g., using Weak by

    PROFILE_FILE=weak_train_100.txt PROFILE_FILE=$DATA_DIR/$PROFILE_FILE

  • OUTPUT_DIR: It will be saved in OUTPUT_DIR=${BERT_MODEL_PATH}/predict/profile

Weakly Supervised Data Refinement Script

Scripts

  • profile2refinedweakdata.sh

Hyperparameter

  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • WEI_RULE: rule for generating weight for each weak sample.
    • uni: all are 1
    • avgaccu: confidence estimate for new labels generated by all_overwrite
    • avgaccu_weak_non_O_promote: confidence estimate for new labels generated by non_O_overwrite
  • PRED_RULE: rule for generating new weak labels.
    • non_O_overwrite: non-entity ('O') is overwrited by prediction
    • all_overwrite: all use prediction, i.e., self-training
    • no: use original weak labels
    • non_O_overwrite_all_overwrite_over_accu_xx: non_O_overwrite + if confidence is higher than xx all tokens use prediction as new labels

The generated data will be saved in ${BERT_MODEL_PATH}/predict/weak_${PRED_RULE}-WEI_${WEI_RULE} WEAK_RULE specified in weak_weighted_selftrain.sh is essential the name of folder weak_${PRED_RULE}-WEI_${WEI_RULE}.

More Rounds of Training, Try Different Combination

  1. To do training with weakly supervised data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Create profile data, e.g., run ./bio_script/profile.sh for dev set and weak set
  • iii) Generate data with weak labels from profile data, e.g., run ./bio_script/profile2refinedweakdata.sh. You can use different rules to generate weights for each sample (WEI_RULE) and different rules to refine weak labels (PRED_RULE). See more details in ./ber-ner/profile2refinedweakdata.py
  • iv) Do training with ./bio_script/weak_weighted_selftrain.sh.
  1. To do fine-tuning with human labeled data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Run ./bio_script/finetune.sh.

Reference

@inproceedings{Jiang2021NamedER,
  title={Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data},
  author={Haoming Jiang and Danqing Zhang and Tianyue Cao and Bing Yin and T. Zhao},
  booktitle={ACL/IJCNLP},
  year={2021}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
Amazon
Amazon
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023