Collection of generative models in Pytorch version.

Overview

pytorch-generative-model-collections

Original : [Tensorflow version]

Pytorch implementation of various GANs.

This repository was re-implemented with reference to tensorflow-generative-model-collections by Hwalsuk Lee

I tried to implement this repository as much as possible with tensorflow-generative-model-collections, But some models are a little different.

This repository is included code for CPU mode Pytorch, but i did not test. I tested only in GPU mode Pytorch.

Dataset

  • MNIST
  • Fashion-MNIST
  • CIFAR10
  • SVHN
  • STL10
  • LSUN-bed

I only tested the code on MNIST and Fashion-MNIST.

Generative Adversarial Networks (GANs)

Lists (Table is borrowed from tensorflow-generative-model-collections)

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN_GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure (Figures are borrowed from tensorflow-generative-model-collections)

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Folder structure

The following shows basic folder structure.

├── main.py # gateway
├── data
│   ├── mnist # mnist data (not included in this repo)
│   ├── ...
│   ├── ...
│   └── fashion-mnist # fashion-mnist data (not included in this repo)
│
├── GAN.py # vainilla GAN
├── utils.py # utils
├── dataloader.py # dataloader
├── models # model files to be saved here
└── results # generation results to be saved here

Development Environment

  • Ubuntu 16.04 LTS
  • NVIDIA GTX 1080 ti
  • cuda 9.0
  • Python 3.5.2
  • pytorch 0.4.0
  • torchvision 0.2.1
  • numpy 1.14.3
  • matplotlib 2.2.2
  • imageio 2.3.0
  • scipy 1.1.0

Acknowledgements

This implementation has been based on tensorflow-generative-model-collections and tested with Pytorch 0.4.0 on Ubuntu 16.04 using GPU.

Owner
Hyeonwoo Kang
Hyeonwoo Kang
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022