A PyTorch toolkit for 2D Human Pose Estimation.

Overview

PyTorch-Pose

screenshot

PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options for the most popular human pose databases (e.g., the MPII human pose, LSP and FLIC).

Some codes for data preparation and augmentation are brought from the Stacked hourglass network. Thanks to the original author.

Update: this repository is compatible with PyTorch 0.4.1/1.0 now!

Features

  • Multi-thread data loading
  • Multi-GPU training
  • Logger
  • Training/testing results visualization

Installation

  1. PyTorch (>= 0.4.1): Please follow the installation instruction of PyTorch. Note that the code is developed with Python2 and has not been tested with Python3 yet.

  2. Clone the repository with submodule

    git clone --recursive https://github.com/bearpaw/pytorch-pose.git
    
  3. Create a symbolic link to the images directory of the MPII dataset:

    ln -s PATH_TO_MPII_IMAGES_DIR data/mpii/images
    

    For training/testing on COCO, please refer to COCO Readme.

  1. Download annotation file:

Usage

Please refer to TRAINING.md for detailed training recipes!

Testing

You may download our pretrained models (e.g., 2-stack hourglass model) for a quick start.

Run the following command in terminal to evaluate the model on MPII validation split (The train/val split is from Tompson et al. CVPR 2015).

CUDA_VISIBLE_DEVICES=0 python example/main.py --dataset mpii -a hg --stacks 2 --blocks 1 --checkpoint checkpoint/mpii/hg_s2_b1 --resume checkpoint/mpii/hg_s2_b1/model_best.pth.tar -e -d
  • -a specifies a network architecture
  • --resume will load the weight from a specific model
  • -e stands for evaluation only
  • -d will visualize the network output. It can be also used during training

The result will be saved as a .mat file (preds_valid.mat), which is a 2958x16x2 matrix, in the folder specified by --checkpoint.

Evaluate the [email protected] score

Evaluate with MATLAB

You may use the matlab script evaluation/eval_PCKh.m to evaluate your predictions. The evaluation code is ported from Tompson et al. CVPR 2015.

The results ([email protected] score) trained using this code is reported in the following table.

Model Head Shoulder Elbow Wrist Hip Knee Ankle Mean
hg_s2_b1 (last) 95.80 94.57 88.12 83.31 86.24 80.88 77.44 86.76
hg_s2_b1 (best) 95.87 94.68 88.27 83.64 86.29 81.20 77.70 86.95
hg_s8_b1 (last) 96.79 95.19 90.08 85.32 87.48 84.26 80.73 88.64
hg_s8_b1 (best) 96.79 95.28 90.27 85.56 87.57 84.3 81.06 88.78

Training / validation curve is visualized as follows.

curve

Evaluate with Python

You may also evaluate the result by running python evaluation/eval_PCKh.py to evaluate the predictions. It will produce exactly the same result as that of the MATLAB. Thanks @sssruhan1 for the contribution.

Training

Run the following command in terminal to train an 8-stack of hourglass network on the MPII human pose dataset.

CUDA_VISIBLE_DEVICES=0 python example/main.py --dataset mpii -a hg --stacks 8 --blocks 1 --checkpoint checkpoint/mpii/hg8 -j 4

Here,

  • CUDA_VISIBLE_DEVICES=0 identifies the GPU devices you want to use. For example, use CUDA_VISIBLE_DEVICES=0,1 if you want to use two GPUs with ID 0 and 1.
  • -j specifies how many workers you want to use for data loading.
  • --checkpoint specifies where you want to save the models, the log and the predictions to.

Miscs

Supported dataset

Supported models

Contribute

Please create a pull request if you want to contribute.

Owner
Wei Yang
NVIDIA Robotics Research Lab
Wei Yang
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022