How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Overview

Deep Q-Learning

Recommend papers

The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper and further improved and elaborated upon in the Nature DQN paper in 2015. We suggest reading both. In your final report, we want you to briefly describe how the Deep Q-learning method works and discuss the new ideas that makes the algorithm work.

Environment

We will use OpenAI gyms Atari-environments. To test that your installation include these you can use

import gym
env = gym.make('Pong-v0')

If this does not work, you can install it with

pip install gym[atari]

Implement and test DQN

DQN can be tricky to implement because it's difficult to debug and sensitive to the choice of hyperparameters. For this reason, it is advisable to start testing on a simple environment where it is clear if it works within minutes rather than hours.

You will be implementing DQN to solve CartPole.

For different reward functions, the convergence of models at different speeds varies greatly. We have customized a function, when the angle of the joystick is closer to 90 degrees and the position of the trolley is closer to the center of mass, the reward is higher, the covergece speed is higher than we simple define the reward as -1 when the situation done.

As you can see in experiment 1 and *1, the hyperparameters are the same but with different reward functions. In experiment 1, the reward function is simple, the agent gets reward 1 when the game was not done, otherwise, the reward is -1. But in experiment *1, we changed the reward function which is based on the state. When the car is closer to the midpoint, the reward is higher. When the angle between the flag and the horizontal line is closer to 90 degrees, the reward is higher, and vice versa. The results revealed that a good reward function can make a huge difference in performance when it comes to Reinforcement Learning, which can speed up the process of agent learning.

Learn to play Pong

Preprocessing frames

A convenient way to deal with preprocessing is to wrap the environment with AtariPreprocessing from gym.wrappers as follows:

env = AtariPreprocessing(env, screen_size=84, grayscale_obs=True, frame_skip=1, noop_max=30)

You should also rescale the observations from 0-255 to 0-1.

Stacking observations

The current frame doesn't provide any information about the velocity of the ball, so DQN takes multiple frames as input. At the start of each episode, you can initialize a frame stack tensor

obs_stack = torch.cat(obs_stack_size * [obs]).unsqueeze(0).to(device)

When you receive a new observation, you can update the frame stack with and store it in the replay buffer as usual.

next_obs_stack = torch.cat((obs_stack[:, 1:, ...], obs.unsqueeze(1)), dim=1).to(device)

Policy network architecture

We recommend using the convolutional neural network (CNN) architecture described in the Nature DQN paper (Links to an external site.). The layers can be initialized with

self.conv1 = nn.Conv2d(4, 32, kernel_size=8, stride=4, padding=0)
self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)
self.fc1 = nn.Linear(3136, 512)
self.fc2 = nn.Linear(512, self.n_actions)

and we use ReLU activation functions as previously. nn.Flatten() may be helpful to flatten the outputs before the fully-connected layers.

Hyperparameters

We suggest starting with the following hyperparameters:

Observation stack size: 4 Replay memory capacity: 10000 Batch size: 32 Target update frequency: 1000 Training frequency: 4 Discount factor: 0.99 Learning rate: 1e-4 Initial epsilon: 1.0 Final epsilon: 0.01 Anneal length: 10**6

While these should work, they are not optimal and you may play around with hyperparameters if you want.

Results of Pong

Note: The more detail analysis can be viewed in analysis folder.

All the experiments are implemented in Google Colab with 2.5 million frames. The parameters are explained as follows.

Discussion

The curve in the resulting figures may not be a good description of the performance of the current model, because we take the average of the most recent 10 episodes as the score of the current model. So when the experiment is over, we re-evaluated the average value ten times with the saved model. This result will be more representative.

We implement multiple experiments based on the environment Pong-v0. In general, the results are basically satisfactory. The configuration of the model and its performance(Column Average reward) are displayed as Table 2.

Replay Memory Size

Figure 3 visualizes the results of Experiment 1, 2 and 3. It can be observed from 3a that when the replay memory size is 10000, the performance of the model is unstable, comparing with the averaged reward trend in Experiment 3. The reason for the differences is that the larger the experience replay, the less likely you will sample correlated elements, hence the more stable the training of the NN will be. However, a large experience replay requires a lot of memory so the training process is slower. Therefore, there is a trade-off between training stability (of the NN) and memory requirements. In these three experiments, the gamma valued 1, so the model is unbiased but with high variance, and also we have done the Experiment 2 twice, second time is basically satisfactory (as you can see in the graph), but first Experiment 2 were really poor which is almost same with Experiment 3. The result varies a lot among these two experiment due to the gamma equals to 1.

Learning Rate

Now we discuss how learning rate affects the averaged reward. It is found from Figure 4 that a high learning rate has relatively large volatility on the overall curve, and the learning ability is not stable enough, but the learning ability will be stronger.

Win Replay Memory

Here we try a new way to train our model and create a win replay memory for those frames that our agent gets reward 1. After 0.4 million frames, we start to randomly pick 5 samples from this win memory and then train the model every 5 thousand frames. The idea is for this kind of memory, the loss may vary a lot, so the model will tune the parameters more. But the results show that the performance is basically the same or even worse than that of learning rate = 0.0002.

Summary

Each experiment takes 4h on Google Colab. We achieve 10-time average reward of 7.9 as the best result that is better than Experiment 1(suggested configuration on Studium), although the result is somewhat random and may be unreproducible. It seems that the models with higher learning rate(0.002) perform better, but its reward influtuates more sharply.

Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022