UFPR-ADMR-v2 Dataset

Overview

UFPR-ADMR-v2 Dataset

The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), which serves more than 4M consuming units in the Brazilian state of Paraná. The images were acquired with many different cameras and are available in the JPG format with 320×640 or 640×320 pixels (depending on the camera orientation). More details are available in our paper (currently under review).

Here are some examples from the dataset:

The dataset is split into three subsets: training (3,000 images), validation (1,000 images) and testing (1,000 images). Every image has the following annotations available in a .txt file: the counter’s corners (x1, y1), (x2, y2), (x3, y3), (x4, y4). The corners can be used to rectify the counter patch and represent, respectively, the top-left, top-right, bottom-right, and bottom-left corners. For each dial, the current position (x, y, w, h) and the corresponding reading (the final reading as well as the approximate reading with one decimal place precision). All counters of the dataset (regardless of meter type) have 4 or 5 dials; thus, 22,410 dials were manually annotated.

The full details and statistics regarding the dataset are available in our paper.

How to obtain the dataset

The UFPR-ADMR-v2 dataset is the property of the Energy Company of Paraná (Copel) and is released only to academic researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to Professor David Menotti ([email protected]). The license agreement MUST be reviewed and signed by the individual or entity authorized to make legal commitments on behalf of the institution or corporation (e.g., Department/Administrative Head, or similar). We cannot accept licenses signed by students or faculty members.

Citation

If you use the UFPR-ADMR-v2 dataset in your research, please cite our paper:

  • G. Salomon, R. Laroca, D. Menotti, “Image-based Automatic Dial Meter Reading in Unconstrained Scenarios,” arXiv preprint, arXiv:2201.02850, pp. 1-10, 2022. [arXiv]
@article{salomon2022image,
  title = {Image-based Automatic Dial Meter Reading in Unconstrained Scenarios},
  author={G. {Salomon} and R. {Laroca} and D. {Menotti}}, 
  year = {2022},
  journal = {arXiv preprint},
  volume = {arXiv:2201.02850},
  number = {},
  pages = {1-10}
}

You may also be interested in the conference version of this paper, where we introduced the UFPR-ADMR-v1 dataset:

  • G. Salomon, R. Laroca, D. Menotti, “Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines” in International Joint Conference on Neural Networks (IJCNN), July 2020, pp. 1–8. [IEEE Xplore] [arXiv]

Related publications

A list of all papers on AMR published by us can be seen here.

Contact

Please contact Professor David Menotti ([email protected]) with questions or comments.

Owner
Gabriel Salomon
just me
Gabriel Salomon
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022