[ICLR'19] Trellis Networks for Sequence Modeling

Overview

TrellisNet for Sequence Modeling

PWC PWC

This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico Kolter and Vladlen Koltun.

On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. This allows trellis networks to serve as bridge between recurrent and convolutional architectures, benefitting from algorithmic and architectural techniques developed in either context. We leverage these relationships to design high-performing trellis networks that absorb ideas from both architectural families. Experiments demonstrate that trellis networks outperform the current state of the art on a variety of challenging benchmarks, including word-level language modeling on Penn Treebank and WikiText-103 (UPDATE: recently surpassed by Transformer-XL), character-level language modeling on Penn Treebank, and stress tests designed to evaluate long-term memory retention.

Our experiments were done in PyTorch. If you find our work, or this repository helpful, please consider citing our work:

@inproceedings{bai2018trellis,
  author    = {Shaojie Bai and J. Zico Kolter and Vladlen Koltun},
  title     = {Trellis Networks for Sequence Modeling},
  booktitle = {International Conference on Learning Representations (ICLR)},
  year      = {2019},
}

Datasets

The code should be directly runnable with PyTorch 1.0.0 or above. This repository contains the training script for the following tasks:

  • Sequential MNIST handwritten digit classification
  • Permuted Sequential MNIST that randomly permutes the pixel order in sequential MNIST
  • Sequential CIFAR-10 classification (more challenging, due to more intra-class variations, channel complexities and larger images)
  • Penn Treebank (PTB) word-level language modeling (with and without the mixture of softmax); vocabulary size 10K
  • Wikitext-103 (WT103) large-scale word-level language modeling; vocabulary size 268K
  • Penn Treebank medium-scale character-level language modeling

Note that these tasks are on very different scales, with unique properties that challenge sequence models in different ways. For example, word-level PTB is a small dataset that a typical model easily overfits, so judicious regularization is essential. WT103 is a hundred times larger, with less danger of overfitting, but with a vocabulary size of 268K that makes training more challenging (due to large embedding size).

Pre-trained Model(s)

We provide some reasonably good pre-trained weights here so that the users don't need to train from scratch. We'll update the table from time to time. (Note: if you train from scratch using different seeds, it's likely you will get better results :-))

Description Task Dataset Model
TrellisNet-LM Word-Level Language Modeling Penn Treebank (PTB) download (.pkl)
TrellisNet-LM Character-Level Language Modeling Penn Treebank (PTB) download (.pkl)

To use the pre-trained weights, use the flag --load_weight [.pkl PATH] when starting the training script (e.g., you can just use the default arg parameters). You can use the flag --eval turn on the evaluation mode only.

Usage

All tasks share the same underlying TrellisNet model, which is in file trellisnet.py (and the eventual models, including components like embedding layer, are in model.py). As discussed in the paper, TrellisNet is able to benefit significantly from techniques developed originally for RNNs as well as temporal convolutional networks (TCNs). Some of these techniques are also included in this repository. Each task is organized in the following structure:

[TASK_NAME] /
    data/
    logs/
    [TASK_NAME].py
    model.py
    utils.py
    data.py

where [TASK_NAME].py is the training script for the task (with argument flags; use -h to see the details).

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022