A framework for joint super-resolution and image synthesis, without requiring real training data

Related tags

Deep LearningSynthSR
Overview

SynthSR

This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The method can also be configured to achieve denoising and bias field correction.

The network takes synthetic scans generated on the fly as inputs, and can be trained to regress either real or synthetic target scans. The synthetic scans are obtained by sampling a generative model building on the SynthSeg [1] package, which we really encourage you to have a look at!


In short, synthetic scans are generated at each mini-batch by: 1) randomly selecting a label map among of pool of training segmentations, 2) spatially deforming it in 3D, 3) sampling a Gaussian Mixture Model (GMM) conditioned on the deformed label map (see Figure 1 below), and 4) corrupting with a random bias field. This gives us a synthetic scan at high resolution (HR). We then simulate thick slice spacing by blurring and downsampling it to low resolution (LR). In SR, we then train a network to learn the mapping between LR data (possibly multimodal, hence the joint synthesis) and HR synthetic scans. Moreover If real images are available along with the training label maps, we can learn to regress the real images instead.


Training overview Figure 1: overview of SynthSR


Tutorials for Generation and Training

This repository contains code to train your own network for SR or joint SR and synthesis. Because the training function has a lot of options, we provide here some tutorials to familiarise yourself with the different training/generation parameters. We emphasise that we provide example training data along with these scripts: 5 preprocessed publicly available T1 scans at 1mm isotropic resolution [2] with corresponding label maps obtained with FreeSurfer [3]. The tutorials can be found in scripts, and they include:

  • Six generation scripts corresponding to different use cases (see Figure 2 below). We recommend to go through them all, (even if you're only interested in case 1), since we successively introduce different functionalities as we go through.

  • One training script, explaining the main training parameters.

  • One script explaining how to estimate the parameters governing the GMM, in case you wish to train a model on your own data.


Training overview Figure 2: Examples generated by running the tutorials on the provided data [2]. For each use case, we show the synhtetic images used as inputs to the network, as well as the regression target.


Content

  • SynthSR: this is the main folder containing the generative model and training function:

    • labels_to_image_model.py: builds the generative model.

    • brain_generator.py: contains the class BrainGenerator, which is a wrapper around the model. New images can simply be generated by instantiating an object of this class, and calling the method generate_image().

    • model_inputs.py: prepares the inputs of the generative model.

    • training.py: contains the function to train the network. All training parameters are explained there.

    • metrics_model.py: contains a Keras model that implements diffrent loss functions.

    • estimate_priors.py: contains functions to estimate the prior distributions of the GMM parameters.

  • data: this folder contains the data for the tutorials (T1 scans [2], corresponding FreeSurfer segmentations and some other useful files)

  • script: additionally to the tutorials, we also provide a script to launch trainings from the terminal

  • ext: contains external packages.


Requirements

This code relies on several external packages (already included in \ext):

  • lab2im: contains functions for data augmentation, and a simple version of the generative model, on which we build to build label_to_image_model [1]

  • neuron: contains functions for deforming, and resizing tensors, as well as functions to build the segmentation network [4,5].

  • pytool-lib: library required by the neuron package.

All the other requirements are listed in requirements.txt. We list here the most important dependencies:

  • tensorflow-gpu 2.0
  • tensorflow_probability 0.8
  • keras > 2.0
  • cuda 10.0 (required by tensorflow)
  • cudnn 7.0
  • nibabel
  • numpy, scipy, sklearn, tqdm, pillow, matplotlib, ipython, ...

Citation/Contact

This repository contains the code related to a submission that is still under review.

If you have any question regarding the usage of this code, or any suggestions to improve it you can contact us at:
[email protected]


References

[1] A Learning Strategy for Contrast-agnostic MRI Segmentation
Benjamin Billot, Douglas N. Greve, Koen Van Leemput, Bruce Fischl, Juan Eugenio Iglesias*, Adrian V. Dalca*
*contributed equally
MIDL 2020

[2] A novel in vivo atlas of human hippocampal subfields usinghigh-resolution 3 T magnetic resonance imaging
J. Winterburn, J. Pruessner, S. Chavez, M. Schira, N. Lobaugh, A. Voineskos, M. Chakravarty
NeuroImage (2013)

[3] FreeSurfer
Bruce Fischl
NeuroImage (2012)

[4] Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
CVPR 2018

[5] Unsupervised Data Imputation via Variational Inference of Deep Subspaces
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
Arxiv preprint (2019)

Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022