(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

Overview

How Do Vision Transformers Work?

This repository provides a PyTorch implementation of "How Do Vision Transformers Work?" In the paper, we show that multi-head self-attentions (MSAs) for computer vision is NOT for capturing long-range dependency. In particular, we address the following three key questions of MSAs and Vision Transformers (ViTs):

  1. What properties of MSAs do we need to better optimize NNs? Do the long-range dependencies of MSAs help NNs learn?
  2. Do MSAs act like Convs? If not, how are they different?
  3. How can we harmonize MSAs with Convs? Can we just leverage their advantages?

We demonstrate that (1) MSAs flatten the loss landscapes, (2) MSA and Convs are complementary because MSAs are low-pass filters and convolutions (Convs) are high-pass filter, and (3) MSAs at the end of a stage significantly improve the accuracy.

Let's find the detailed answers below!

I. What Properties of MSAs Do We Need to Improve Optimization?

MSAs improve not only accuracy but also generalization by flattening the loss landscapes. Such improvement is primarily attributable to their data specificity, NOT long-range dependency 😱 Their weak inductive bias disrupts NN training. On the other hand, ViTs suffers from non-convex losses. MSAs allow negative Hessian eigenvalues in small data regimes. Large datasets and loss landscape smoothing methods alleviate this problem.

II. Do MSAs Act Like Convs?

MSAs and Convs exhibit opposite behaviors. For example, MSAs are low-pass filters, but Convs are high-pass filters. In addition, Convs are vulnerable to high-frequency noise but that MSAs are not. Therefore, MSAs and Convs are complementary.

III. How Can We Harmonize MSAs With Convs?

Multi-stage neural networks behave like a series connection of small individual models. In addition, MSAs at the end of a stage play a key role in prediction. Based on these insights, we propose design rules to harmonize MSAs with Convs. NN stages using this design pattern consists of a number of CNN blocks and one (or a few) MSA block. The design pattern naturally derives the structure of canonical Transformer, which has one MLP block for one MSA block.


In addition, we also introduce AlterNet, a model in which Conv blocks at the end of a stage are replaced with MSA blocks. Surprisingly, AlterNet outperforms CNNs not only in large data regimes but also in small data regimes. This contrasts with canonical ViTs, models that perform poorly on small amounts of data.

This repository is based on the official implementation of "Blurs Make Results Clearer: Spatial Smoothings to Improve Accuracy, Uncertainty, and Robustness". In this paper, we show that a simple (non-trainable) 2 βœ• 2 box blur filter improves accuracy, uncertainty, and robustness simultaneously by ensembling spatially nearby feature maps of CNNs. MSA is not simply generalized Conv, but rather a generalized (trainable) blur filter that complements Conv. Please check it out!

Getting Started

The following packages are required:

  • pytorch
  • matplotlib
  • notebook
  • ipywidgets
  • timm
  • einops
  • tensorboard
  • seaborn (optional)

We mainly use docker images pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime for the code.

See classification.ipynb for image classification. Run all cells to train and test models on CIFAR-10, CIFAR-100, and ImageNet.

Metrics. We provide several metrics for measuring accuracy and uncertainty: Acuracy (Acc, ↑) and Acc for 90% certain results (Acc-90, ↑), negative log-likelihood (NLL, ↓), Expected Calibration Error (ECE, ↓), Intersection-over-Union (IoU, ↑) and IoU for certain results (IoU-90, ↑), Unconfidence (Unc-90, ↑), and Frequency for certain results (Freq-90, ↑). We also define a method to plot a reliability diagram for visualization.

Models. We provide AlexNet, VGG, pre-activation VGG, ResNet, pre-activation ResNet, ResNeXt, WideResNet, ViT, PiT, Swin, MLP-Mixer, and Alter-ResNet by default.

Visualizing the Loss Landscapes

Refer to losslandscape.ipynb for exploring the loss landscapes. It requires a trained model. Run all cells to get predictive performance of the model for weight space grid. We provide a sample loss landscape result.

Evaluating Robustness on Corrupted Datasets

Refer to robustness.ipynb for evaluation corruption robustness on corrupted datasets such as CIFAR-10-C and CIFAR-100-C. It requires a trained model. Run all cells to get predictive performance of the model on datasets which consist of data corrupted by 15 different types with 5 levels of intensity each. We provide a sample robustness result.

How to Apply MSA to Your Own Model

We find that MSA complements Conv (not replaces Conv), and MSA closer to the end of stage improves predictive performance significantly. Based on these insights, we propose the following build-up rules:

  1. Alternately replace Conv blocks with MSA blocks from the end of a baseline CNN model.
  2. If the added MSA block does not improve predictive performance, replace a Conv block located at the end of an earlier stage with an MSA
  3. Use more heads and higher hidden dimensions for MSA blocks in late stages.

In the animation above, we replace Convs of ResNet with MSAs one by one according to the build-up rules. Note that several MSAs in c3 harm the accuracy, but the MSA at the end of c2 improves it. As a result, surprisingly, the model with MSAs following the appropriate build-up rule outperforms CNNs even in the small data regime, e.g., CIFAR!

Caution: Investigate Loss Landscapes and Hessians With l2 Regularization on Augmented Datasets

Two common mistakes ⚠️ are investigating loss landscapes and Hessians (1) 'without considering l2 regularization' on (2) 'clean datasets'. However, note that NNs are optimized with l2 regularization on augmented datasets. Therefore, it is appropriate to visualize 'NLL + l2' on 'augmented datasets'. Measuring criteria without l2 on clean dataset would give incorrect (even opposite) results.

Citation

If you find this useful, please consider citing πŸ“‘ the paper and starring 🌟 this repository. Please do not hesitate to contact Namuk Park (email: namuk.park at gmail dot com, twitter: xxxnell) with any comments or feedback.

BibTex is TBD.

License

All code is available to you under Apache License 2.0. CNN models build off the torchvision models which are BSD licensed. ViTs build off the PyTorch Image Models and Vision Transformer - Pytorch which are Apache 2.0 and MIT licensed.

Copyright the maintainers.

Owner
xxxnell
Programmer & ML researcher
xxxnell
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Este conversor criarΓ‘ a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criarΓ‘ a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎢 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎢 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022